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Primes

Since I am a number theorist, I care almost exclusively about
primes.

You’ll (occasionally) hear number theorists use other words
and phrases such as the following:

irreducible

prime ideal

maximal ideal

place

We use these words to make it appear that we’re studying other
things. They are all some analog of prime.
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Primes

Some questions about primes for us to think about today:

1. A number field is a field K which is a finite extension of Q.
What do primes look like in K?

For instance, consider the field

Q[i ] = {a + bi : a, b ∈ Q} .

What are the primes in Q[i ]? Certainly 2 isn’t prime since it
can be factored in the “integers” as 2 = (1 + i)(1− i).

2. Let Q be a fixed algebraic closure of Q, i.e., Q is a smallest
field containing the roots of all polynomials with rational
coefficients.

What do primes look like in Q?
Does it even make sense to speak of primes here?
If so, how many primes should I expect to see?
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Absolute Values on Fields

Remarkably, absolute values are an effective way to address both
questions simultaneously.

Let F be a field. An absolute value on F is a function
| · | : F → [0,∞) which satisfies the following properties:

1. |x | = 0 if and only if x = 0

2. |xy | = |x | · |y | for all x , y ∈ F

3. |x + y | ≤ |x |+ |y | for all x , y ∈ F (Triangle Inequality).
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The Trivial Absolute Value

Every field field has at least one absolute value given by

|x |0 =

{
0 if x = 0

1 if x 6= 0.

This is called the trivial absolute value.

If F is a finite field, then the trivial absolute value is the only
absolute value on F .

Otherwise, we can expect to see many other types.
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If | · | is an absolute value on F , then there is a trivial way to create
a new absolute value.

Specifically, let 0 < θ < 1 and define

‖x‖ = |x |θ for all x ∈ F .

When creating new absolute values on a field, we want to avoid
this silly technique.

Two absolute values ‖ · ‖ and | · | are called equivalent if there
exists θ > 0 such that ‖x‖ = |x |θ for all x ∈ F .

An equivalence class of non trivial absolute values on F is
called a place of F .
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Absolute Values on Q
We can build non-trivial places of Q in two ways:

The usual absolute value is given by

|x |∞ =

{
x if x ≥ 0

−x if x < 0.

If p is prime, then each non-zero rational number x may be
expressed in the form x = pαy , where y has no factors of p.
Then the p-adic absolute value is defined by

|x |p =

{
0 if x = 0

p−α if x 6= 0.

It is possible to prove that none of the above absolute values are
equivalent.
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Absolute Values on Q

Theorem 1 (Ostrowski).

Every absolute value on Q is equivalent to one of the following:

(i) the trivial absolute value | · |0
(ii) the usual absolute value | · |∞
(iii) the p-adic absolute value | · |p for some prime p.

As a result of this theorem, {∞, 2, 3, 5, 7, . . .} is the complete list
of places of Q.

We no longer think of a prime as an element of Z, but rather, we
interpret it as a place of Q.
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Suppose now that K is a number field.

Each place v of K restricts to a unique place p = pv of Q. In
this case, we say that v divides p and write v | p.

There are only finitely many places of K that divide each
place of Q.

We can organize the places of K as the following disjoint union:

{Places of K} =
⋃
p

{Places of K dividing p}

where p runs over the primes and ∞. This should be interpreted as
a description of the primes of K .
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Infinite Extensions

The places of Q have a more exotic behavior.

Thankfully, Allcock
and Vaaler (2009) gave us a useful way to study them.

Let Y denote the set of all places of Q.

If K is a number field and v is a place of K , write Y (K , v) to
denote the set of places of Q that divide v .

The collection of all sets of the form Y (K , v) forms a basis
for a topology on Y .
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Infinite Extensions

Each set Y (K , v) is

uncountable

totally disconnected

free of isolated points

These sets are homeomorphic to the Cantor set. Therefore, the set

Y =
⋃
p

Y (Q, p)

of places of Q is a disjoint countable union of Cantor sets. As with
number fields, the above discussion should be seen as a description
of the primes of Q.
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The Prime Counting Homomorphism

Definition.

For each rational number x, we let Ω(x) be net the number of (not
necessarily distinct) prime factors of x.

Alternatively,

x = pr1
1 pr2

2 · · · p
rk
k , Ω(x) = r1 + r2 + · · ·+ rk .

As we now have an interpretation of prime in Q, maybe we can
extend Ω to Q. There are some obstacles:

The ring of integers in Q doesn’t have unique factorization
into primes. It doesn’t have factorization into primes at all.

While we have provided an analog of primes for Q, that set is
uncountable. So what exactly does a prime counting
homomorphism count?

We can gain some insight by doing a little measure theory on Y .
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homomorphism count?

We can gain some insight by doing a little measure theory on Y .
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Rings of Sets

We shall fix a set S of places of Q and let

X = {y ∈ Y : y | p for some p ∈ S} .

A non-empty collection of subsets R of X is called a ring of sets if
for all A,B ∈ R we have

(i) A ∪ B ∈ R
(ii) A \ B ∈ R

It follows from these assumptions that ∅ ∈ R, and from De
Morgan’s laws, that A ∩ B ∈ R.
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The Ring of Finite Unions

Consider the collection of ordered pairs

J = {(K , v) : [K : Q] <∞, v divides a place in S} .

Let R be the collection of all finite unions of the sets Y (K , v),
where (K , v) ∈ J .

R is precisely the collection of open compact subsets of X .

R is a ring of sets on X .
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Finitely Additive Measures

A map µ : R → R is called a measure on R if

(i) µ(∅) = 0

(ii) If A,B ∈ R are disjoint sets then µ(A ∪ B) = µ(A) + µ(B).

My definition of measure might be a bit different from definitions
you’ve seen in the past. For example, your definition might

be defined only on a σ-algebra

require countable additivity

require µ(A) ≥ 0 for all A ∈ R.

permit values of ±∞
If you want more precision, you might refer to my definition as a
finite-valued finitely-additive signed measure on R.
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Extensions of Ω

Equipped with this definition of measure, we can create many
extensions of Ω to Q using the following easy steps:

1. Let S = {2, 3, 5, 7, 11, . . .} and let X be the set of places of Q
that divide a place in S .

2. Select a measure µ on X such that µ(Y (Q, p)) = −1 for all
p ∈ S .

3. Let K be a number field and let SK be the set of places of K
dividing a place in S .

Given a non-zero point α ∈ K , we define

Ω(α) =
∑
v∈SK

log |α|v
log pv

· µ(Y (K , v)).
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Extensions of Ω

On a superficial glance, the definition of Ω appears to depend on
K .

But:

The finite additivity assumption about µ ensures that Ω(α)
remains unchanged if K is replaced with a different number
field containing α.

Therefore, Ω : Q× → Q is a well-defined group
homomorphism that depends only on µ.

If α ∈ Q× then we may write α = pr1
1 pr2

2 · · · p
rk
k and we find

Ω(α) =
k∑

i=1

log p−rii

log pi
· (−1) =

k∑
i=1

ri .

Hence, our new definition of Ω(α) agrees with our previous
definition when α ∈ Q.
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Computations Using Ω

The group homomorphism property is useful for computing Ω(α)
when α 6∈ Q.

To find Ω(
√

2):

Ω(
√

2) =
1

2
· (Ω(
√

2) + Ω(
√

2)) =
1

2
· Ω(2) =

1

2

regardless of the choice of µ.

To find Ω(1 + i):

Ω(1 + i) + Ω(1− i) = Ω(2) = 1.

We need information about µ to compute Ω(1 + i).

There is a unique measure λ that causes Ω to give equal
values to all pairs of Galois conjugates over Q. Using this
measure

Ω(1 + i) = Ω(1− i) =
1

2
.
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An Vector Space Related to Q
This connection between measures and Ω is a special case of a
more general result.

Let Z be the ring of algebraic integers. Then quotient space

V := Q×/Z×

is a vector space over Q with addition and scalar multiplication
given by

(α, β) 7→ αβ and (r , α) = αr .

Ω : V → Q is a well-defined linear transformation, i.e., it is an
element of the algebraic dual of V.

Theorem 2 (S, 2022).

The space of rational valued measures is isomorphic to the
algebraic dual of V.
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The End
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