
Connection Problems in Graphs

Jason Rosenhouse
Department of Mathematics and Statistics

James Madison University

MD-DC-VA Section Meeting
at Virginia State University

April 29, 2023



What Are Graphs?

A graph is an ordered pair G = (V ,E ) where

V is a set of vertices.

E ⊂ V × V is a set of edges.
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What Are Graphs?

We assume that our edges are not directed. Our edges are
line segments, not arrows.

We assume that every edge has two distinct endpoints. There
are no loops.

We assume there is no more than one edge between any pair
of vertices. There are no multiple edges.

A graph is said to be connected if for any pair of vertices
there is a walk between them.

Graphs of this sort are said to be simple. In this talk, all of our
graphs are assumed to be simple and connected.



What is Algebraic Graph Theory?

This book is concerned with the use of algebraic techniques
in the study of graphs. The aim is to translate properties of
graphs into algebraic properties and then, using the results
and methods of algebra, to deduce theorems about graphs.

Norman Biggs
Algebraic Graph Theory



The Adjacency Matrix

Let G be a finite, simple graph on n vertices. Let v1, . . . , vn be an
arbitrary ordering of the vertices. Then the adjacency matrix A(G )
is the n × n matrix whose entries satisfy:

aij =

{
1 if vi is adjacent to vj

0 otherwise

The matrix A(G ) is real and symmetric, and has trace 0. Since the
ordering of the vertices is arbitrary, A(G ) is determined only up to
a permutation of the rows and columns. Thus, our interest will be
in properties of A(G ) that are invariant with respect to such
permutations.



Examples

Figure: On the left we have K4, the complete graph on four vertices. On
the right is K2,2, the complete bipartite graph on sets of size two.

We have that:

A(K4) =


0 1 1 1

1 0 1 1

1 1 0 1

1 1 1 0

 A(K2,2) =


0 0 1 1

0 0 1 1

1 1 0 0

1 1 0 0





Two Elementary Results

Theorem

The number of walks of length ℓ in G, from vi to vj , is given by
the entry in position (i , j) in Aℓ.

A(K4)
2 =


3 2 2 2

2 3 2 2

2 2 3 2

2 2 2 3

 A(K2,2)
2 =


2 2 0 0

2 2 0 0

0 0 2 2

0 0 2 2





Two Elementary Results

Theorem

Let the characteristic polynomial of A(G ) be written as

xn + cn−1x
n−1 + cn−2x

n−2 + · · ·+ c1x + c0.

Then the coefficients satisfy:

cn−1 = 0.

−cn−2 is twice the number of edges of G.

−cn−3 is twice the number of triangles of G.



The Eigenvalue Spectrum

Since the eigenvalues of a matrix are invariant under permutations
of the rows and columns, they are of special interest in algebraic
graph theory. A list of the eigenvalues of the adjacency matrix,
with their multiplicities is called the eigenvalue spectrum of the
graph.

For example:

Spec K4 =

(
3 −1

1 3

)
and Spec K2,2 =

(
−2 0 2

1 2 1

)



Two More Elementary Results

Theorem

Let G be a k-regular graph. Then k is an eigenvalue of G.

Proof.

If G is k-regular, then [1, 1, . . . , 1]T is an eigenvector for A(G ).



Two More Elementary Results

Theorem

Let G be a bipartite graph. Then the eigenvalue spectrum of G is
symmetrical around the origin.

Proof.

(Sketch.) For K2,2, we find that [1, 1, 1, 1]T is an eigenvector with
eigenvalue 2, while [1, 1,−1,−1]T is an eigenvector with
eigenvalue −2. This trick always works!



Competing Concerns

Network design confronts engineers with competing concerns.

Too few edges make the network vulnerable to attack or
mechanical failure. A network shaped like a barbell, for
example, would become disconnected by cutting a single edge.

Too many edges make the network expensive. Generally it is
not feasible to design a network in the form of a complete
graph.



The Isoperimetric Number

Let G be a graph. Let S ⊂ V (G ). The edge-boundary of S ,
denoted by ∂S , is the set of edges in E (G ) with one endpoint in S ,
and the other in the complement of S .

The isoperimetric number of G , denoted by i(G ) is then defined by

i(G ) = inf
S

|∂S |
|S |

,

where the infimum is taken over all sets S satisfying

|S | ≤ 1

2
|V (G )|.



Examples

There are special cases where i(G ) can be computed explicitly:

1 i(Kn) = ⌈n/2⌉
2 i(Cn) =

2
⌊n/2⌋

3 i(Pn) =
1

⌊n/2⌋

4 i(Km,n) =


mn/m + n if m,n are even,

(mn + 1)/(m + n) if m,n are odd,

mn/(m + n − 1) if m+n is odd.

In most cases, alas, we must make do with deriving upper and
lower bounds for i(G ).



The Isoperimetric Number (Continued)

It is a measure of whether there are bottlenecks in the graph.
A low isoperimetric number indicates the presence of a
bottleneck. Equivalently, it is a measure of how easy it is to
fracture the graph by cutting a small number of edges.

Related to the first point, in theoretical computer science it is
often relevant to study the resiliency of a network.

Graphs with a large isoperimetric number have strong
expansion properties. Roughly, a good expander is a graph
that is sparse (in the sense of having a small number of edges
relative to the number of vertices), but also resilient (in the
sense of being difficult to fracture without cutting a large
number of edges.)



The Platonic Graphs

Let Γ be the group Zn ×Zn − {(0, 0)}. We define the graphs πn as
follows:

The vertices of πn are given by Γ/{±1}.
Vertices (a, b) and (c , d) are connected by an edge iff

det

(
a b

c d

)
≡ ±1 (mod n).

The graphs πn are called the Platonic graphs, because for
n = 3, 4, 5 they correspond to the 1-skeletons of the tetrahedron,
cube, and the dodecahedron.



The Isoperimetric Numbers of the Platonic Graphs

Theorem (Brooks, Perry, Petersen 1993)

Let p be a prime satisfying p ≡ 1 (mod 4). Then

i(πp) ≤
(p − 1)p

2(p + 1)
.

Theorem (Lanphier, Rosenhouse 2004)

Let p be a prime number, and let r ∈ Z+. Then we have

i(πpr ) ≤


pr (p−1)
2(p+1) if p ̸≡ 3 (mod 4),

p2r−2p2r−1+5p2r−2−4pr−1+4
2(pr−2p2r−1−3pr−2+4p−1)

if p ≡ 3 (mod 4).



Wheel Graphs

Let Cn−1 be the cycle on n − 1 vertices, and let Wn be the graph
obtained from Cn−1 by the addition of a single vertex v , with one
edge connecting v to each of the n − 1 vertices in Cn−1.

Figure: On the left, the graph C6. On the right, the graph W7.

The graphs Wn are referred to as wheel graphs.



The Decomposition Theorem

Theorem (Lanphier, Rosenhouse 2004)

When p is prime, the graph πp can be partitioned into
(p − 1)/2 isomorphic copies of Wp+1, with 2p edges joining
every pair of wheels. Alternatively, πp is the complete

multigraph K 2p
(p−1)/2, in which every vertex should be viewed

as a wheel.

The graph πpr can be partitioned into two sets A and B so

that A is isomorphic to the complete multigraph K 2pr

Φ(pr )/2,
while vertices in B are joined only to vertices in A, where Φ
denotes the Euler phi function.



Illustrating the Decomposition



Cayley Graphs

Let Γ be a group. Let S be a symmetric generating set for Γ.
(That is, if s ∈ S then s−1 ∈ S .) Define a graph whose vertices are
the elements of Γ, with vertices γ1 and γ2 adjacent if there is an
s ∈ S such that sγ1 = γ2.

This is called the Cayley graph of Γ with respect to the generating
set S . Assuming that S is symmetric ensures that our Cayley
graphs are non-directed.



The Platonic Graphs as Cayley Graphs

Let Γn denote the group PSL(2,Zn). Thus, the entries of Γn are

2× 2 matrices.

Entries from the integers mod n.

Determinant ±1 (mod n).

Equivalent if they only differ by multiplication by −1.

This group is generated by the elements:

U =

(
1 1

0 1

)
and V =

(
0 1

−1 0

)



The Platonic Graphs as Cayley Graphs

Thus, the set
S = {U,U−1,V }

is a symmetric generating set for Γn.

Define an equivalence relation on the vertices by declaring that
v1 ∼ v2 if v1 = Ukv2 for some positive integer k . The equivalence
classes of this relation are circuits of length n.

The Platonic graphs πn are obtained from the Cayley graphs Gn by
collapsing each of these circuits to a point.



The Projective Special Linear Groups

Let Γ = SL(2,Z) denote the group of 2× 2 matrices with integer
entries and determinant 1. Then Γ acts on the complex upper half
plane via fractional linear transformations:

z 7→ az + b

cz + d
.

A fundamental domain for this action is given by the standard
“modular triangle”:

Re z =1/2Re z = -1/2 Re z =1/2

|z|=1



Tiling the Plane With Modular Triangles



Congruence Subgroups

Define the Nth principle congruence subgroup of Γ to be:

Γ(N) =

{(
a b

c d

)
∈ SL(2,Z) |

(
a b

c d

)
≡

(
1 0

0 1

)
(mod N)

}

It is possible to construct a simply-connected fundamental domain
for the action of Γ(N) on the upper half plane by gluing together
modular triangles. This fundamental domain can be viewed as a
Riemann surface. Using H to denote the upper half plane, we can
denote this surface by H/Γ(N).



The Return of the Platonic Graphs

The surface H/Γ(N) comes “pretriangulated.”

We can construct a graph by having one vertex for each modular
triangle, with pairs of vertices connected if they share a boundary
edge. The resulting graphs are again the Platonic graphs. That is,
they are the Cayley graphs of PSL(2,Zn) we discussed previously.



The Cheeger Constant

In 1970, Jeff Cheeger defined the following constant, where M is a
closed, n-dimensional, Riemannian manifold:

h(M) = inf
N

area(N)

min (vol(A), vol(B))
,

where N runs over all (n − 1)-dimensional hypersurfaces dividing
M into two pieces A and B.

If λ1(M) denotes the first eigenvalue of the Laplacian on M, then
we have that

λ1(M) ≥ 1

4
h(M)2.



The Discrete Cheeger Constant

What we are calling the isoperimetric number is a discrete version
of the Cheeger constant introduced by Peter Buser in 1978. His
idea was to study the spectral geometry of closed manifolds via the
following program:

Triangulate the manifold.

Associate a cubic graph to the triangulation.

Work out the isoperimetric number of the graph.

Relate the isoperimetric number to the Cheeger constant.



The Isoperimetric Number, Revisited

Every edge in our Cayley graphs represents a boundary edge of a
modular triangle in the surface. Moreover, every vertex in the
graph represents a modular triangle. It follows that estimates on
the isoperimetric number of the Cayley graph lead immediately to
estimates on the Cheeger constant of the surface.

More specifically, the edges of a modular triangle have length
log(3), while the modular triangles have area π/3. It follows that

h(H/Γ(N)) ≤ 3 log(3)

π
i(Gn).



The Picard Modular Group

The Picard modular group is defined as SL(2,Z[i ]). As before, we
can mod out by a congruence subgroup, leading to the groups
PSL(2,Zp[i ]). This group has a standard generating set, and we
can consider the Cayley graphs for these groups with respect to
this set.

Theorem (Lanphier, Rosenhouse 2004)

The Cayley graphs for the prime quotients of the Picard modular
group satisfy a decomposition theorem similar to the one
previously described.



The Euclidean Bianchi Groups

Let d be a positive integer. Set Kd = Q(
√
−d). These are referred

to as the Bianchi groups. These groups, and their congruence
subgroups, act on complex upper three-space. This leads to certain
arithmetic hyperbolic three-manifolds, and there is an analog to
Selberg’s eigenvalue conjecture for these surfaces. Quotients can
be constructed by modding out by a prime ideal, and these
quotients have standard generating sets.

For certain choices of d , we have that the ring of integers Od is
Euclidean. In 2009, we were able to extend our previous results to
the Cayley graphs of quotients of the Euclidean Bianchi groups.



Lower Bounds

Finding upper bounds on i(G ) is easy. Just pick a set, work out
the isoperimetric quotient, and there’s your bound.

Lower bounds are harder to come by, but they are possible when
the graph is highly connected.

The idea is that when there are a large number of short paths
between arbitrary pairs of vertices, we can establish a minimum
number of edges that must be cut to separate them.



Lower Bounds for the Platonic Graphs

Using this general approach, we can establish strong lower bounds
for the Platonic graphs. Specifically, we have the following:

Theorem (Lanphier, Rosenhouse 2006)

With notation as before, and with p ≡ 1 (mod 4), we have

pr −
√

p2r−2 + 2pr − 6

2
≤ i(πpr ) ≤

pr (p − 1)

2(p + 1)
.

Note that both bounds approach pr/2 as p → ∞.



Levi Graphs

Levi graphs are bipartite graphs arising from (balanced,
incomplete) block designs. The vertices are the points and blocks
of the design, with each block adjacent to the points it contains.
Levi graphs are highly connected in the sense previously described.

In a 2006 REU project with Christopher Miller and Amber Russell,
we were able to derive upper and lower bounds on the
isoperimetric numbers of Cayley graphs. In particular, we derived
strong bounds for finite projective planes and Hadamard designs.



The End

Thank You!


