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Introduction

If a pair of rabbits is placed in an enclosed area, how many pairs of
rabbits will there be after a year if we have the following assumptions:

Every month a pair of rabbits produces another pair

Rabbits begin to bear young two months after their birth and

None of the rabbits die

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, . . .
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Research Questions

Are there patterns in the prime factors of the sum F 2
n + F 2

n−2 for
all n ≥ 2?

Are there different patterns in the prime factors of the sum
F 3
n + F 3

n−2 for all n ≥ 2?

Spirit Karcher

Prime Factors and Divisibility of Sums of Powers of Fibonacci Numbers Christopher Newport University



Preliminaries

The Recursive Definition:

Fn+2 = Fn+1 + Fn, for n ∈ N with F1 = F2 = 1
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Preliminaries

Modular Arithmetic
Definition: Let n be a positive integer and let a and b be any
integers. We say that a is congruent to b mod n written,
a ≡ b mod n, if a and b have the same remainder when divided by
n.
Properties:

(a mod n) + (b mod n) ≡ (a + b) mod n

(a mod n)(b mod n) ≡ (ab) mod n
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Preliminaries

Table: Fn under mod 2

n 1 2 3 4 5 6 7 8 9 10 11

Fn 1 1 2 3 5 8 13 21 34 55 89

Fn mod 2 1 1 0 1 1 0 1 1 0 1 1

F 2
n mod 2 1 1 0 1 1 0 1 1 0 1 1
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Preliminaries

Definition: A divisibility sequence is an integer sequence, {an},
indexed by positive integers n, such that if m divides n then am
divides an.

Example: F3 = 2 so when, n = 3k , 2 divides F3k

Proposition

1. F3 = 2 divides every third Fibonacci number.

2. F4 = 3 divides every fourth Fibonacci number.

3. F5 = 5 divides every fifth Fibonacci number.
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Results

Lemma

For all n ∈ N0,
F 2
3n+4 + F 2

3n+2 is even.

Proof.

F 2
3n+4 + F 2

3n+2 =
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Results

Lemma

For all n ∈ N0,
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Results
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Results

Table: Fn under mod 5

n 1 1 2 3 5 8 13 21 34 55 89 144 233 377

Fn 1 1 2 3 0 3 3 1 4 0 4 4 3 2

F 2
n 1 1 4 4 0 4 4 1 1 0 1 1 4 4
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Results

Lemma

For all n ≥ 2,

F 2
n + F 2

n−2 will never have a factor of 3.

Proof.

a. F 2
n and F 2

n−2 both have a factor of 3; that is
F 2
n ≡ F 2

n−2 ≡ 0 mod 3, or

b. F 2
n ≡ 1 mod 3 and F 2

n−2 ≡ 2 mod 3 or vice versa.
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Conclusions and Further Work

Lemma

For all n ∈ N0, F 3
4n+3 + F 3

4n+1 is divisible by 3.

Conjecture

For all n ∈ N0, F 2
14n+5 + F 2

14n+3 is divisible by 29.

F 2
14n+11 + F 2

14n+9 is divisible by 29.

Conjecture

For all n ∈ N0, L23n+5 + L23n+3 is divisible by 2.

L3n+3 + L3n+1 is divisible by 5.
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Questions

Thank You! Questions?
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