Prime Factors and Divisibility of Sums of Powers of Fibonacci Numbers Christopher Newport University

Spirit Karcher

April 14, 2018

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 ののの

Spirit Karcher

Introduction

If a pair of rabbits is placed in an enclosed area, how many pairs of rabbits will there be after a year if we have the following assumptions:

- Every month a pair of rabbits produces another pair
- Rabbits begin to bear young two months after their birth and

• None of the rabbits die

Introduction

If a pair of rabbits is placed in an enclosed area, how many pairs of rabbits will there be after a year if we have the following assumptions:

- Every month a pair of rabbits produces another pair
- Rabbits begin to bear young two months after their birth and
- None of the rabbits die

 $1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, \ldots$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Spirit Karcher

Research Questions

• Are there patterns in the prime factors of the sum $F_n^2 + F_{n-2}^2$ for all $n \ge 2$?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

• Are there different patterns in the prime factors of the sum $F_n^3 + F_{n-2}^3$ for all $n \ge 2$?

Spirit Karcher

The Recursive Definition:

$$F_{n+2} = F_{n+1} + F_n$$
, for $n \in \mathbb{N}$ with $F_1 = F_2 = 1$

Spirit Karcher

<u>Modular Arithmetic</u>

Definition: Let *n* be a positive integer and let *a* and *b* be any integers. We say that *a* is *congruent* to *b* mod *n* written, $a \equiv b \mod n$, if *a* and *b* have the same remainder when divided by *n*.

Properties:

$$(a \mod n) + (b \mod n) \equiv (a+b) \mod n$$

$$(a \mod n)(b \mod n) \equiv (ab) \mod n$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 うの()

Spirit Karcher

Table: F_n under mod 2

n	1	2	3	4	5	6	7	8	9	10	11
F _n	1	1	2	3	5	8	13	21	34	55	89
$F_n \mod 2$	1	1	0	1	1	0	1	1	0	1	1
$F_n^2 \mod 2$	1	1	0	1	1	0	1	1	0	1	1

Spirit Karcher

Definition: A *divisibility sequence* is an integer sequence, $\{a_n\}$, indexed by positive integers n, such that if m divides n then a_m divides a_n .

Prime Factors and Divisibility of Sums of Powers of Fibonacci Numbers Christopher Newport University

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 うの()

Definition: A *divisibility sequence* is an integer sequence, $\{a_n\}$, indexed by positive integers n, such that if m divides n then a_m divides a_n .

Example: $F_3 = 2$ so when, n = 3k, 2 divides F_{3k}

Spirit Karcher

Prime Factors and Divisibility of Sums of Powers of Fibonacci Numbers Christopher Newport University

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 うの()

Definition: A *divisibility sequence* is an integer sequence, $\{a_n\}$, indexed by positive integers n, such that if m divides n then a_m divides a_n .

Example:
$$F_3 = 2$$
 so when, $n = 3k$, 2 divides F_{3k}

Proposition

- 1. $F_3 = 2$ divides every third Fibonacci number.
- 2. $F_4 = 3$ divides every fourth Fibonacci number.
- 3. $F_5 = 5$ divides every fifth Fibonacci number.

Spirit Karcher

Lemma

For all $n \in \mathbb{N}_0$,

 $F_{3n+4}^2 + F_{3n+2}^2$ is even.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Spirit Karcher

Lemma

For all $n \in \mathbb{N}_0$,

$$F_{3n+4}^2 + F_{3n+2}^2$$
 is even.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Proof.

$$F_{3n+4}^2 + F_{3n+2}^2 =$$

Spirit Karcher

Lemma

For all $n \in \mathbb{N}_0$,

$$F_{3n+4}^2 + F_{3n+2}^2$$
 is even.

Proof.

$$F_{3n+4}^2 + F_{3n+2}^2 = \underbrace{(F_{3n+3} + F_{3n+2})^2}_{= F_{3n+4}^2} + F_{3n+2}^2$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Spirit Karcher

Lemma

For all $n \in \mathbb{N}_0$,

$$F_{3n+4}^2 + F_{3n+2}^2$$
 is even.

Proof.

$$F_{3n+4}^2 + F_{3n+2}^2 = (F_{3n+3} + F_{3n+2})^2 + F_{3n+2}^2$$
$$= F_{3n+3}^2 + 2F_{3n+3}F_{3n+2} + 2F_{3n+2}^2$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Spirit Karcher

Lemma

For all $n \in \mathbb{N}_0$,

$$F_{3n+4}^2 + F_{3n+2}^2$$
 is even.

Proof.

$$F_{3n+4}^2 + F_{3n+2}^2 = (F_{3n+3} + F_{3n+2})^2 + F_{3n+2}^2$$
$$= F_{3n+3}^2 + 2\mathbf{F}_{3n+3}\mathbf{F}_{3n+2} + 2\mathbf{F}_{3n+2}^2$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Spirit Karcher

Lemma

For all $n \in \mathbb{N}_0$,

$$F_{3n+4}^2 + F_{3n+2}^2$$
 is even.

Proof.

$$F_{3n+4}^2 + F_{3n+2}^2 = (F_{3n+3} + F_{3n+2})^2 + F_{3n+2}^2$$
$$= \mathbf{F_{3n+3}^2} + 2F_{3n+3}F_{3n+2} + 2F_{3n+2}^2$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Spirit Karcher

Lemma

For all $n \in \mathbb{N}_0$,

$$F_{3n+4}^2 + F_{3n+2}^2$$
 is even.

Proof.

$$F_{3n+4}^2 + F_{3n+2}^2 = (F_{3n+3} + F_{3n+2})^2 + F_{3n+2}^2$$
$$= F_{3n+3}^2 + 2F_{3n+3}F_{3n+2} + 2F_{3n+2}^2$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Spirit Karcher

Lemma

For all $n \in \mathbb{N}_0$,

a.
$$F_{5n+3}^2 + F_{5n+1}^2$$
 is a multiple of 5.
b. $F_{5n+4}^2 + F_{5n+2}^2$ is a multiple of 5.

Spirit Karcher

Lemma

For all $n \in \mathbb{N}_0$,

a.
$$F_{5n+3}^2 + F_{5n+1}^2$$
 is a multiple of 5.
b. $F_{5n+4}^2 + F_{5n+2}^2$ is a multiple of 5.

F _n	1	1	2	3	5	8	13	21	34	55	89
$F_n \mod 5$	1	1	2	3	0	3	3	1	4	0	4
$F_n^2 \mod 5$	1	1	4	4	0	4	4	1	1	0	1

Spirit Karcher

Lemma

For all
$$n \in \mathbb{N}_0$$
, $F_{5n+3}^2 + F_{5n+1}^2$ is a multiple of 5.

Proof.

$$F_{5n+3}^2 + F_{5n+1}^2 = \underbrace{(F_{5n+2} + F_{5n+1})^2}_{= F_{5n+3}^2} + F_{5n+1}^2$$

Spirit Karcher

Lemma

For all
$$n \in \mathbb{N}_0$$
, $F_{5n+3}^2 + F_{5n+1}^2$ is a multiple of 5.

Proof.

$$F_{5n+3}^{2} + F_{5n+1}^{2} = \underbrace{(F_{5n+2} + F_{5n+1})^{2}}_{= F_{5n+3}^{2}} + F_{5n+1}^{2}$$
$$= F_{5n+2}^{2} + 2F_{5n+2}F_{5n+1} + 2F_{5n+1}^{2}$$

Spirit Karcher

Lemma

For all
$$n \in \mathbb{N}_0$$
, $F_{5n+3}^2 + F_{5n+1}^2$ is a multiple of 5.

Proof.

$$F_{5n+3}^2 + F_{5n+1}^2 = (F_{5n+2} + F_{5n+1})^2 + F_{5n+1}^2$$
$$= F_{5n+2}^2 + 2F_{5n+2}F_{5n+1} + 2F_{5n+1}^2$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Spirit Karcher

Lemma

For all
$$n \in \mathbb{N}_0$$
, $F_{5n+3}^2 + F_{5n+1}^2$ is a multiple of 5.

Proof.

$$F_{5n+3}^{2} + F_{5n+1}^{2} = (F_{5n+2} + F_{5n+1})^{2} + F_{5n+1}^{2}$$
$$= F_{5n+2}^{2} + 2F_{5n+2}F_{5n+1} + 2F_{5n+1}^{2}$$
$$= \underbrace{(F_{5n+1} + F_{5n})^{2}}_{=F_{5n+2}^{2}} + 2F_{5n+2}F_{5n+1} + 2F_{5n+1}^{2}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Spirit Karcher

Lemma

For all $n \in \mathbb{N}_0$, $F_{5n+3}^2 + F_{5n+1}^2$ is a multiple of 5.

Proof.

$$F_{5n+3}^2 + F_{5n+1}^2 = (F_{5n+2} + F_{5n+1})^2 + F_{5n+1}^2$$

= $F_{5n+2}^2 + 2F_{5n+2}F_{5n+1} + 2F_{5n+1}^2$
= $(F_{5n+1} + F_{5n})^2 + 2F_{5n+2}F_{5n+1} + 2F_{5n+1}^2$
= $3F_{5n+1}^2 + F_{5n}^2 + 2F_{5n+1}F_{5n} + 2F_{5n+2}F_{5n+1}$

◆□▶ ◆□▶ ★ 臣▶ ★ 臣▶ 三臣 - のへで

Spirit Karcher

Lemma

For all
$$n \in \mathbb{N}_0$$
, $F_{5n+3}^2 + F_{5n+1}^2$ is a multiple of 5.

Proof.

$$F_{5n+3}^{2} + F_{5n+1}^{2} = (F_{5n+2} + F_{5n+1})^{2} + F_{5n+1}^{2}$$

= $F_{5n+2}^{2} + 2F_{5n+2}F_{5n+1} + 2F_{5n+1}^{2}$
= $(F_{5n+1} + F_{5n})^{2} + 2F_{5n+2}F_{5n+1} + 2F_{5n+1}^{2}$
= $3F_{5n+1}^{2} + F_{5n}^{2} + 2F_{5n+1}F_{5n} + 2F_{5n+1}\underbrace{(F_{5n+1} + F_{5n})}_{= F_{5n+2}}$

Spirit Karcher

Lemma

For all
$$n \in \mathbb{N}_0$$
, $F_{5n+3}^2 + F_{5n+1}^2$ is a multiple of 5.

Proof.

$$F_{5n+3}^2 + F_{5n+1}^2 = (F_{5n+2} + F_{5n+1})^2 + F_{5n+1}^2$$

= $F_{5n+2}^2 + 2F_{5n+2}F_{5n+1} + 2F_{5n+1}^2$
= $(F_{5n+1} + F_{5n})^2 + 2F_{5n+2}F_{5n+1} + 2F_{5n+1}^2$
= $3F_{5n+1}^2 + F_{5n}^2 + 2F_{5n+1}F_{5n} + 2F_{5n+2}F_{5n+1}$
= $5F_{5n+1}^2 + F_{5n}^2 + 4F_{5n+1}F_{5n}$

Spirit Karcher

Lemma

For all
$$n \in \mathbb{N}_0$$
, $F_{5n+3}^2 + F_{5n+1}^2$ is a multiple of 5.

Proof.

$$F_{5n+3}^{2} + F_{5n+1}^{2} = (F_{5n+2} + F_{5n+1})^{2} + F_{5n+1}^{2}$$

= $F_{5n+2}^{2} + 2F_{5n+2}F_{5n+1} + 2F_{5n+1}^{2}$
= $(F_{5n+1} + F_{5n})^{2} + 2F_{5n+2}F_{5n+1} + 2F_{5n+1}^{2}$
= $3F_{5n+1}^{2} + F_{5n}^{2} + 2F_{5n+1}F_{5n} + 2F_{5n+2}F_{5n+1}$
= $5F_{5n+1}^{2} + F_{5n}^{2} + 4F_{5n+1}F_{5n}$

Spirit Karcher

Lemma

For all
$$n \in \mathbb{N}_0$$
, $F_{5n+3}^2 + F_{5n+1}^2$ and $F_{5n+4}^2 + F_{5n+2}^2$ are multiples of 5.

Proof.

$$F_{5n+3}^{2} + F_{5n+1}^{2} = (F_{5n+2} + F_{5n+1})^{2} + F_{5n+1}^{2}$$

= $F_{5n+2}^{2} + 2F_{5n+2}F_{5n+1} + 2F_{5n+1}^{2}$
= $(F_{5n+1} + F_{5n})^{2} + 2F_{5n+2}F_{5n+1} + 2F_{5n+1}^{2}$
= $3F_{5n+1}^{2} + F_{5n}^{2} + 2F_{5n+1}F_{5n} + 2F_{5n+2}F_{5n+1}$
= $5F_{5n+1}^{2} + F_{5n}^{2} + 4F_{5n+1}F_{5n}$

Spirit Karcher

Table: F_n under mod 5

n	1	1	2	3	5	8	13	21	34	55	89	144	233	377
F _n	1	1	2	3	0	3	3	1	4	0	4	4	3	2
F_n^2	1	1	4	4	0	4	4	1	1	0	1	1	4	4

Spirit Karcher

Table: F_n under mod 5

F _n	1	1	2	3	5	8	13	21	34	55	89	144	233	377
F _n	1	1	2	3	0	3	3	1	4	0	4	4	3	2
F_n^2	1	1	4	4	0	4	4	1	1	0	1	1	4	4

Spirit Karcher

Lemma

For all $n \geq 2$,

$$F_n^2 + F_{n-2}^2$$
 will never have a factor of 3.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Proof.

Spirit Karcher

Lemma

For all $n \geq 2$,

$$F_n^2 + F_{n-2}^2$$
 will never have a factor of 3.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Proof.

a.
$$F_n^2$$
 and F_{n-2}^2 both have a factor of 3; that is $F_n^2 \equiv F_{n-2}^2 \equiv 0 \mod 3$, or

Spirit Karcher

Lemma

For all $n \geq 2$,

$$F_n^2 + F_{n-2}^2$$
 will never have a factor of 3.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Proof.

a.
$$F_n^2$$
 and F_{n-2}^2 both have a factor of 3; that is
 $F_n^2 \equiv F_{n-2}^2 \equiv 0 \mod 3$, or
b. $F_n^2 \equiv 1 \mod 3$ and $F_{n-2}^2 \equiv 2 \mod 3$ or vice versa.

Spirit Karcher

Lemma

For all
$$n \ge 2$$
, $F_n^2 + F_{n-2}^2$ will never have a factor of 3.

Proof.

a. F_n^2 and F_{n-2}^2 both have a factor of 3; that is $F_n^2\equiv F_{n-2}^2\equiv 0 \mbox{ mod } 3$

n	1	2	3	4	5	6	7	8	9	10	11
F _n	1	1	2	3	5	8	13	21	34	55	89
$F_n \mod 3$	1	1	2	0	2	2	1	0	1	1	2
$F_n^2 \mod 3$	1	1	1	0	1	1	1	0	1	1	1

◆□> ◆□> ◆目> ◆目> ◆目> ○日 のへぐ

Spirit Karcher

Lemma

For all $n \ge 2$, $F_n^2 + F_{n-2}^2$ will never have a factor of 3.

Proof.

b. $F_n^2 \equiv 1 \mod 3$ and $F_{n-2}^2 \equiv 2 \mod 3$ or vice versa.

n	1	2	3	4	5	6	7	8	9	10	11
F _n	1	1	2	3	5	8	13	21	34	55	89
$F_n \mod 3$	1	1	2	0	2	2	1	0	1	1	2
$F_n^2 \mod 3$	1	1	1	0	1	1	1	0	1	1	1

◆□▶ ◆□▶ ★ 臣▶ ★ 臣▶ 三臣 - のへで

Spirit Karcher

Lemma

For all $n \geq 2$,

$$F_n^2 + F_{n-2}^2$$
 will never have a factor of 3.

Proof.

a.
$$F_n^2$$
 and F_{n-2}^2 both have a factor of 3; that is
 $F_n^2 \equiv F_{n-2}^2 \equiv 0 \mod 3$, or
b. $F_n^2 \equiv 1 \mod 3$ and $F_{n-2}^2 \equiv 2 \mod 3$ or vice versa.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Spirit Karcher

Conclusions and Further Work

Lemma

For all $n \in \mathbb{N}_0$, $F_{4n+3}^3 + F_{4n+1}^3$ is divisible by 3.

Spirit Karcher

Prime Factors and Divisibility of Sums of Powers of Fibonacci Numbers Christopher Newport University

▲□▶ ▲□▶ ▲目▶ ▲目▶ | 目 | つくぐ

Conclusions and Further Work

Lemma

For all $n \in \mathbb{N}_0$, $F_{4n+3}^3 + F_{4n+1}^3$ is divisible by 3.

Conjecture

For all $n \in \mathbb{N}_0$, $F_{14n+5}^2 + F_{14n+3}^2$ is divisible by 29. $F_{14n+11}^2 + F_{14n+9}^2$ is divisible by 29.

Spirit Karcher

Prime Factors and Divisibility of Sums of Powers of Fibonacci Numbers Christopher Newport University

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Conclusions and Further Work

Lemma

For all $n \in \mathbb{N}_0$, $F_{4n+3}^3 + F_{4n+1}^3$ is divisible by 3.

Conjecture

For all
$$n \in \mathbb{N}_0$$
, $F_{14n+5}^2 + F_{14n+3}^2$ is divisible by 29.
 $F_{14n+11}^2 + F_{14n+9}^2$ is divisible by 29.

Conjecture

For all
$$n \in \mathbb{N}_0$$
, $L^2_{3n+5} + L^2_{3n+3}$ is divisible by 2.
 $L^3_{n+3} + L^3_{n+1}$ is divisible by 5.

Spirit Karcher

Prime Factors and Divisibility of Sums of Powers of Fibonacci Numbers Christopher Newport University

◆□▶ ◆□▶ ★ 臣▶ ★ 臣▶ 三臣 - のへで

Questions

Thank You! Questions?

Spirit Karcher

References

Critsa Arangala, Burke Hrovat, and Jacob Kelner, Sums of powers of Fibonacci and Lucas numbers, The Minnesota Journal of Undergraduate Mathematics 2 (2016), no. 1, 1–12. Stuart Clary and Paul D. Hemenway, On sums of cubes of Fibonacci numbers, Applications of Fibonacci Numbers (1993). 123-136. Raja Rama Gandhi, Divisibility properties of fibonacci numbers, South Asian Journal of Mathematics 1 (2011), no. 3, 140-144. Gareth A. Jones and J. Mary Jones. *Elementary number theory*. Springer, 2008. R S Melham, Alternating sums of fourth powers of Fibonacci and Lucas numbers, The Fibonacci Quarterly 38 (2000), no. 3, 254-259, http://www.fq.math.ca/Scanned/38-3/melham.pdf. _____. Some conjectures concerning sums of odd powers of Fibonacci and Lucas numbers. The Fibonacci Quarterly 46/47 (2009), 312-315, http://www.fg.math.ca/Papers1/46_47-4/Melham.pdf. Montri Thongmoon, Identities for the common factors of Fibonacci and Lucas numbers, International Mathematical Forum, vol. 4, 2009, pp. 303-308, ____, New identities for the even and odd Fibonacci and Lucas numbers, Int. J. Contemp. Math. Sciences 4 (2009), no. 7, 303-308.

・ロト ・同ト ・ヨト ・ヨト

3

Spirit Karcher