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Brilliant.org Puzzle

• Problem appeared in a Facebook post this past winter

• What is the sum of x, y, and z?

• It is

• But how do you evaluate that? 

)3arctan()2arctan()1arctan( 



Example 2

• What is ))9/14cos(2arctan()9/8cos(2arctan()9/2cos(2(tan(arctan   ?
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Tangents

• tan(arctan(1)) = 1, tan(arctan(2))=2, tan(arctan(3))=3

• This suggests we work with sums of tangents.
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Sum of Tangents
• High school trigonometry, but we want tan(A+B+C)
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Tangents of sums

• Note that the tangent formula is expressed only with tangents, not 
with other trig functions

• This allows us to evaluate tan(A+B+C) as tan((A+B)+C) and use the 
tangent formula twice.



Tangent of sum of three angles
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Symmetric Polynomials

• The terms in the formula are symmetric in tan(A), tan(B) and tan(C)

• They are symmetric polynomials, as are coefficients of polynomials

• This suggests finding a polynomial equation which has tan(A), tan(B) and tan(C) as 
roots; let r1, r2, and r3 be tan(A), tan(B) and tan(C ) respectively
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Tangent of four angles

• Note the minus sign in in front of Line 2. That’s because ak, where k is 
odd, is the negative of the sum of products in the term. 

• This seems to confirm the pattern. That suggests a theorem, but first 
of all some new notation.
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Some notation

• Define 

• Where the sum is taken over all j-subsets of roots. If the number of roots is less than j, 
this is defined to be 0.

• Example

• Where a, b, … are the roots of a polynomial equation
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Bracket and Brace Notation

• For example,

• The coefficients of a polynomial equation are (-1)k[11…1] for k 1’s, 
where the string of k 1’s corresponds to ak .

• To avoid writing strings of 1’s, make another definition

• If the number of roots < n, then {n}=0.
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Bracket and brace notation

• Then for any polynomial f(x), 

• This is much cleaner than complicated summation symbols or long 
strings of monomials. 

• Note this is independent of the particular root values or even of the 
number of roots (degree of equation).

• Note that for all j, 

• And also that I number coefficients upward instead of downward in 
the conventional form. 
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Bracket and Brace Notation

• When it is necessary to include the number of roots, write 

• where p is the number of roots. 

• This is zero if p<k and p<n, respectively.
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Polynomial-tangent theorem

• Suppose that the roots of an equation

• are 

Then
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Lemma

• First note that                           That proves the last equality of the theorem.

• Lemma: Let si=tan(ri) for all i= 1, …, n. Then

• Proof. Does a term in {p}n+1 contain sn+1 or not? 
• The terms that do have sn+1 in it have p-1 variables in it along with sn+1. This gives    

{p-1}n sn+1 . 

• The terms that do not have sn are precisely the terms in {p}n. 
• Adding these together gives line 1 of the lemma.

• For the second line, {n}n is simply the product of the s’s up to n. Multiplying 
this by sn+1 gives the product up to n+1.
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Proof of theorem

• By induction. If n=1, then we get s1 = s1, or tan(r1)=tan(r1), which is true.
• Suppose theorem true up to n. Then we apply the lemma termwise

(included subscripts)

• Result is the formula for n+1.
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The original problem

• Evaluate

• Evaluate first the tangent of this in terms of the tangents of the original terms

• Find equation that has 1, 2,3 as roots

• Apply formula

• tan(x+y+z)=0, so that x+y+z = 0 + n for some n. The individual angles are all between /4 and /2, so their 
sum cannot exceed 3/2. This implies n=1 and x+y+z=

• That is the answer to the original problem.
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Geometric Solution



Example 2

• tan(arctan(2cos(2/9))= 2cos(2/9)

• Use triple angle formula 
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Call this quantity U
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Possible avenues for research

• Newton’s Identities – how do they relate to this problem?

• Something similar for sines and cosines? Two trig functions to work 
with

• How does the formula relate to the geometric solution?

• Lill’s method also deals with tangents and polynomial equations. How 
does it relate to this problem?
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Newton’s Identities
in bracket and brace notation
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Lill’s Method
x3+6x2+11x+6=0



Triangle Identity

• Found this on Math Stack Exchange:
• Show tan(A)+tan(B)+tan(C) = tan(A)tan(B)tan(C)

• if a+b+c=180 degrees; e.g. they are the angles of a

• triangle

• Solution:

QED
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Example 4

• One can compute by adding/multiplying these roots together that 
they solve this equation:
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• Apply the formula:

0156 24  xxx

6

5

)1()6(1

)5(0

1}4{}2{1

}3{}1{

42

31 














aa

aa


