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Why numerical differentiation?

Derivatives are easy. Why estimate them numerically?

Useful for really complicated functions (especially ones
defined by a program)

Useful in some other methods, like the finite-element
method for differential equations
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The usual approach

Start with the definition of the derivative:

lim
h→0

f(x+ h)− f(x)

h

Choosing a small value of h gives an estimate of f ′(x).

For example, if f(x) = sinx, then

f ′(1) ≈ sin(1 + .0001)− sin(1)

.0001
= .54026

(Exact value is .54030...)
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A small problem

Mathematically, smaller values of h should give closer estimates,
but that’s not the case in practice.

h
(3 + h)2 − 32

h

0.1 6.100000000000012
0.001 6.000999999999479
10−5 6.000009999951316
10−7 6.000000087880153
10−9 6.000000496442226
10−11 6.000000496442226
10−13 6.004086117172844
10−15 5.329070518200751



What’s the problem?

The first 30 digits of the floating-point representation of
(3 + h)2, where h = 10−13:

9.000000000000600408611717284657

The last three “correct” digits are 6 0 0. Everything after that
is an artifact of the floating-point representation.

When we subtract 9 from this and divide by 10−13, all of the
digits starting with the that 6 are “promoted” to the front, and
we get 6.004086. . . , which is only correct to the second decimal
place.



More accurate formulas

There are more accurate formulas, such as

f ′(x) ≈ f(x+ h)− f(x− h)

2h
,

f ′(x) ≈ f(x− h)− 8f(x− h/2) + 8f(x+ h/2)− f(x+ h)

6h
.

But these still suffer from the same problem.
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Taylor series

Taylor series expansion for f(x+ h):

f(x+ h) = f(x) + f ′(x)h+
f ′′(x)

2!
h2 +

f ′′′(x)

3!
h3 + . . . .

From this we get

f ′(x) =
f(x+ h)− f(x)

h
+
f ′′(x)

2!
h+

f ′′′(x)

3!
h2 + . . .︸ ︷︷ ︸

Error

.



Dual numbers

Recall that imaginary numbers are defined by creating a
new (nonreal) number i with the property i2 = −1.

Let’s create a new (nonreal) number ε with the property
that ε2 = 0.

Note that ε is not 0.

The set of dual numbers consists of all expressions of the
form a+ bε, with a, b ∈ R.



Operations

Addition: (a+ bε)± (c+ dε) = (a± c) + (b± d)ε

Multiplication: (a+ bε)(c+ dε) = ac+ (ad+ bc)ε

Division: (Multiply by the conjugate)

a+ bε

c+ dε
· c− dε
c− dε

=
a

c
+
bc− ad
c2

ε



Key observation

Taylor series expansion for f(x+ ε):

f(x+ ε) = f(x) + f ′(x)ε+
f ′′(x)

2!
ε2 +

f ′′′(x)

3!
ε3 + . . . .

All of the higher order terms are 0, since ε2, ε3, etc. are all 0.

So the following equation is exact:

f(x+ ε) = f(x) + f ′(x)ε

If we solve this for the derivative, we get

f ′(x)ε = f(x)− f(x+ ε).

So the exact value of the derivative of f at a real number x is
gotten from the dual component of f(x)− f(x+ ε).
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How do we evaluate functions of dual numbers?

A similar Taylor series argument gives us

f(a+ bε) = f(a) + bf ′(a)ε,

For instance,

sin(a+ bε) = sin(a) + b cos(a)ε.

In particular,

sin
(π

3
+ 3ε

)
=

1

2
+

3

2
ε.
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Product, quotient, chain rules

Product, quotient and chain rules are easily shown:

Chain rule:

f(g(x+ ε)) = f(g(x) + g′(x)ε) = f(g(x)) + g′(x)f ′(g(x))ε.

Product rule:

(fg)(x+ ε) = f(x+ ε)g(x+ ε)

= (f(x) + f ′(x)ε)(g(x) + g′(x)ε)

= f(x)g(x) +
(
f ′(x)g(x) + f(x)g′(x)

)
ε
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Python implementation

So all we have to do is program in the rules for elementary
operations and some common functions and everything will just
work.



Part of the Python implementation



More of the Python implementation



Testing it out
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More info

More about dual numbers

Quotient of R[x] by (x2).

Show up in algebraic geometry

Show up in modern physics

Other uses for automatic differentiation

Also useful for functions defined by computer programs

Can be applied to higher derivatives

Can be applied to functions from Rn to Rm
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