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Introduction

Many students take no math beyond AP calculus – not this group
however, so this is not solving the problem.

Indeed they were either heading into Multivariable Calculus and
Linear Algebra in the fall or had already taken those (1 student) –
but hadn’t seen honors topics in one-variable calculus.

I attended the IBL workshop at UCSB early last summer – wanted
to try something out

I have always had IBL-ish tendencies

Have taught honors and regular calculus repeatedly, also history
of math and I run a math circle so have lots of interesting material,
with no syllabus to cover for this course
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STRUCTURE OF THE COURSE

Met daily, 9 to noon, for two weeks

On day 1, students (4 total, unfortunately) were asked to propose
topics of interest (had my list too, not shared)

Their main choices: proofs; numerical integration; method of
shells; introduction to multivariable calculus; some history.

They were willing to do work outside of class, but not tons of it
(summer and enrichment).

They wanted more topics sampled rather than a shorter, deeper
list – their choice.
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STRUCTURE OF THE COURSE – DAY 1

Started with: you took BC calculus, you must have questions

Went through a chronological outline of topics in BC calculus

Began with derivative definition as limit of difference quotients

Did something new: proved the chain rule along with using the
algebra of differentials to avoid memorization

y = g(f (x)) is built using an intermediate result u = f (x),
y = g(u):

du = f ′(x)dx , dy = g′(u)du, so by substitution dy = g′(u)f ′(x)dx

This says that the derivatives get multiplied when differentiating a
composite function, just as slopes did in the purely linear case.
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Chain Rule Proof – DAY 1

The key idea is that the difference quotient has a removable singularity
if the function is differentiable, which is a good reason to understand
limits:

Define f1(x ,a) =

{
f (x)−f (a)

x−a if x 6= a;
f ′(a) if x = a

and similarly

g1(u,b) =

{
g(u)−g(b)

u−b if u 6= b;
g′(b) if u = b

R. Sachs (GMU) calculus enrichment MAA Spring Meeting 2013 5 / 1



Chain Rule Proof – DAY 1

The key idea is that the difference quotient has a removable singularity
if the function is differentiable, which is a good reason to understand
limits:

Define f1(x ,a) =

{
f (x)−f (a)

x−a if x 6= a;
f ′(a) if x = a

and similarly

g1(u,b) =

{
g(u)−g(b)

u−b if u 6= b;
g′(b) if u = b

R. Sachs (GMU) calculus enrichment MAA Spring Meeting 2013 5 / 1



Chain Rule Proof – DAY 1

The key idea is that the difference quotient has a removable singularity
if the function is differentiable, which is a good reason to understand
limits:

Define f1(x ,a) =

{
f (x)−f (a)

x−a if x 6= a;
f ′(a) if x = a

and similarly

g1(u,b) =

{
g(u)−g(b)

u−b if u 6= b;
g′(b) if u = b

R. Sachs (GMU) calculus enrichment MAA Spring Meeting 2013 5 / 1



Chain Rule Proof – DAY 1 – continued

Notice that we can then write the following equations for the
differences:

g(u)− g(b) = g1(u,b)(u − b), f (x)− f (a) = f1(x ,a)(x − a).

This allows us to “divide and then conquer” the composition and
extends the differentials language to finite differences:

g(f (x))− g(f (a)) = g(u)− g(b) = g1(u,b)(u − b)
= g1(u,b)(f (x)− f (a))
= g1(u,b)f1(x ,a)(x − a)

which permits the division of the composite by x − a and the passage
to the limit:
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Chain Rule Proof – DAY 1 – continued

lim
x→a

g(f (x))− g(f (a))
x − a

= lim
x→a

g1(u,b)f1(x ,a) = g′(b)f ′(a)

We used the fact that differentiability implies that when x approaches
a, we know u approaches b.

On computer, I zoomed in to show why we care about tangent lines,
then showed some plots of difference quotients, with both variables x
and a as well as with x alone and h = x − a as button
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Difference quotient plots

Here is a plot of the difference quotient for the exponential function
with x and a on [−2,2]
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Difference quotient plots

Here is the difference quotient for the exponential function plotted in x
(with h=0.0001) on [−2,2]
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End of Day 1: some comments

Homework was to explore some difference quotients including x6, xn,
and 1/x

They came back with some nice work.

In notion of best practices: took to heart the importance of day 1 in
setting tone and expectations (UCSB workshop advice)
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Some General Comments

From here on, several common threads were explored

Connections across topics

Doing things with reasoning behind it

Link between continuous and discrete

What should be true? Law and Order metaphor

Recursive thinking

History
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STRUCTURE OF THE COURSE – DAY 2

Discussed the homework

Recursion notion here – binomial theorem

Hockey stick identity and its combinatorial meaning

Trig derivatives on circle intuitively

Euler’s formula for complex exponential
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STRUCTURE OF THE COURSE – DAY 3

Using Euler’s theorem

Discussed the homework: encoding trig identities

Doing integrals involving exponentials and sine or cosine

One of my favorites: complex powers zn as complex mappings

Leads to topological ideas for proof of Fundamental Theorem of
Algebra

Fun history here: d’Alembert vs. Gauss
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Fundamental Theorem of Algebra

Image of small circle in z is wandering closely about p(0), avoiding
origin in w plane

Winding number around origin in w-plane is zero

Image of large circle in z is really large circle in w plane, wrapped
n times around.

Appeal to continuity – must have w=p(z)=0 somewhere in
between

Back to divisibility of p(z)-p(a) by z-a for n roots! Also back to
intermediate value theorem, topological degree for real
polynomials
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My other favorites – hard to choose

Numerical integration (ideas behind error estimates) – use Taylor
polynomials; use trapezoid for Stirling’s (below) and sum of
powers of integers.

Theory and Proof: Newton on integrability in monotonic case;
discussion on need for concept of uniform continuity (or something
like it) for general continuous functions.

History: Fermat and geometric partitions; Archimedes; Tangents:
Fermat vs. Descartes; Newton estimating π; Euler summing ζ(2)

Fixed point iteration: Babylonian
√

2; geometric series; general
fixed point and rate of convergence; Newton’s method.

Series as sums of differences – Cauchy criterion coming naturally;

Size of n! tied to Taylor series; radius of convergence and complex
values; Abel’s theorem on convergence at endpoints.
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Concluding remarks

The students were already interested, but found the course extremely
stimulating.

The course had limited use of δ − ε proofs.

Lots of pieces came into play, depending on the topic

Tried first and foremost to have students experience how
mathematicians think about mathematics, not just in terms of problems
applying results but how to (re)create results

Thank you for your attention and I welcome your
comments and/or questions.
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Numerical Integration Ideas

On small interval for differentiable integrand, function looks linear

Students eventually come to linear case: midpoint, trapezoid both
work well

Error arises from quadratic terms in Taylor expansion about
midpoint: leads to Simpson as blend

Mean value theorems (not discussed in detail) lead to error
estimates for all three of these.

Student who asked for this was really happy we did it!!

Back to topics list
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Geometric Series

Summing geometric series rewritten as fixed point problem

sn = r sn−1 + a

Assuming limit exists (Law and Order), find the only suspect:

S = r S + a

Subtract to show exponential (geometric) approach to limiting
value (don’t find partial sum directly):

sn − S = r(sn−1 − S)

Back to topics list
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Cauchy Criterion for Series

Summing general series rewritten as iterative process

sn = sn−1 + an

Assuming limit of partial sums exists (Law and Order), try to find
the only suspect:

S = S + lim
n→∞

an

Oops. But now do it recursively to obtain the much more powerful
criterion:

sn+k = sn−1 + an + an+1 + . . .+ an+k

No more oops. If limit is to exist, for any k the Cauchy tail must
tend to zero.
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Babylonian Iteration (speculative)

Showed picture of YBC 7289 with square root of 2 computed

Speculative view of this as an iterative process

Start with area 2 rectangle given as 1 x 2

Average sides, find complementary side. Then iterate

Always a rectangle, always with rational sides! Limit is irrational.

Back to topics list

R. Sachs (GMU) calculus enrichment MAA Spring Meeting 2013 20 / 1



Babylonian Iteration (speculative)

Showed picture of YBC 7289 with square root of 2 computed

Speculative view of this as an iterative process

Start with area 2 rectangle given as 1 x 2

Average sides, find complementary side. Then iterate

Always a rectangle, always with rational sides! Limit is irrational.

Back to topics list

R. Sachs (GMU) calculus enrichment MAA Spring Meeting 2013 20 / 1



Babylonian Iteration (speculative)

Showed picture of YBC 7289 with square root of 2 computed

Speculative view of this as an iterative process

Start with area 2 rectangle given as 1 x 2

Average sides, find complementary side. Then iterate

Always a rectangle, always with rational sides! Limit is irrational.

Back to topics list

R. Sachs (GMU) calculus enrichment MAA Spring Meeting 2013 20 / 1



Babylonian Iteration (speculative)

Showed picture of YBC 7289 with square root of 2 computed

Speculative view of this as an iterative process

Start with area 2 rectangle given as 1 x 2

Average sides, find complementary side. Then iterate

Always a rectangle, always with rational sides! Limit is irrational.

Back to topics list

R. Sachs (GMU) calculus enrichment MAA Spring Meeting 2013 20 / 1



Babylonian Iteration (speculative)

Showed picture of YBC 7289 with square root of 2 computed

Speculative view of this as an iterative process

Start with area 2 rectangle given as 1 x 2

Average sides, find complementary side. Then iterate

Always a rectangle, always with rational sides! Limit is irrational.

Back to topics list

R. Sachs (GMU) calculus enrichment MAA Spring Meeting 2013 20 / 1



Stirling’s formula

Began with question: how big is 1000! for example

Got very quick reply: not as big as 1000 raised to 1000

After some time, tried 500 raised to 1000 – off by 2 x 10 raised to
the power 123

Sum of ln(k) to get ln(n!) with trapezoid piece

Get everything good except
√

2π (get e instead)
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