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What To Expect

1835: Plücker, inflection points on cubics, and the (9, 3, 1) block design

1843-45: Graves, Cayley, the octonions, and seven triples

1844-47: Woolhouse, Kirkman, and the (7, 3, 1) design

1853: Steiner and the “first” triple systems

1892: Fano, the “first” finite geometry, and (7, 3, 1)

2013: Conclusions – not quite the end
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Elliptic curves
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An elliptic curve is the set of all points (x , y) where y 2 = g(x) where
g is a cubic polynomial with three distinct roots.

A point of inflection on an elliptic curve is a point (x , y) on the curve
where y ′′ is defined and changes sign.
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Plücker

Julius Plücker (1801-1868)
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1835: Plücker’s discovery

The first finite geometry

The nine points of inflection on an elliptic curve:

8 1 6

3 5 7

4 9 2

The nine-point affine plane AG (2, 3)

(9, 3, 1): the first “Steiner” triple system

three rows: {1, 6, 8}, {2, 4, 9}, {3, 5, 7}
three columns: {1, 5, 9}, {2, 6, 7}, {3, 4, 8}

three main diagonals: {1, 4, 7}, {2, 5, 8}, {3, 6, 9}
three off diagonals: {1, 2, 3}, {4, 5, 6}, {7, 8, 9}

9 points, 3 points to a line, each pair of points on exactly 1 line

Brown-Rice Block designs, normed algebras, and finite geometries



Normed Algebras

Definition

A normed algebra A is an n-dimensional vector space over the real
numbers R such that

α(xy) = (αx)y = x(αy), for all α ∈ R, x , y ∈ A
x(y + z) = xy + xz , (y + z)x = yx + zx , ∀x , y , z ∈ A
There exists a function N : A→ R such that
N(xy) = N(x)N(y) for all x , y ∈ A.

Examples

The real numbers R form a one-dimensional normed algebra with
N(x) = x2.

The complex numbers C form a two-dimensional normed algebra with
N(x + iy) = (x + iy)(x − iy).

There are two others.
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Hamilton

William Rowan Hamilton (1805-1865)
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Graves

John Thomas Graves (1806-1870)
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1843-44

October

Hamilton writes to Graves describing his four-dimensional normed algebra
– the quaternions H. Let a, b, c, d ∈ R. Then

H = {a + bi + cj + dk : i2 = j2 = k2 = ijk = −1,

with N(a + bi + cj + dk) = (a + bi + cj + dk)(a− bi − cj − dk). Note

that ij = k = −ji , so H is a noncommutative algebra.

December

Graves writes to Hamilton stating that he has constructed an
eight-dimensional normed algebra O he calls the octaves.

January

Graves’s January 22 letter to Hamilton contains the details about O.
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The Octaves or Octonions O

The set

O = {a0 + a1e1 + a2e2 + a3e3 + a4e4 + a5e5 + a6e6 + a7e7 : an ∈ R}

How to multiply real numbers

Multiplication of real numbers is as usual.
If r ∈ R, then ren = enr .

How to multiply the units en

e1
2 = e2

2 = e3
2 = e4

2 = e5
2 = e6

2 = e7
2 = −1

e1 = e2e4 = e3e7 = e5e6 = −e4e2 = −e7e3 = −e6e5

e2 = e3e5 = e4e1 = e6e7 = −e5e3 = −e1e4 = −e7e6

e3 = e4e6 = e5e2 = e7e1 = −e6e4 = −e2e5 = −e1e7

e4 = e5e7 = e6e3 = e1e2 = −e7e5 = −e3e6 = −e2e1

e5 = e6e1 = e7e4 = e2e3 = −e1e6 = −e4e7 = −e3e2

e6 = e7e2 = e1e5 = e3e4 = −e2e7 = −e5e1 = −e4e3

e7 = e1e3 = e2e6 = e4e5 = −e3e1 = −e6e2 = −e5e4
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Cayley

Arthur Cayley (1821-1895)
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1845

Cayley’s appendix

Cayley writes a paper about elliptic functions that is practically
incomprehensible . . .

. . . except for the one-page appendix, which describes his own version of
the octonions.

Seven triples

The appendix includes an explicit mention of seven certain triples of
numbers that explain the multiplication.

Remember this, because it’s important.
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Octonion multiplication and the seven triples

The key to multiplication in O
Cyclically order the elements in the seven triples (1, 2, 4), (2, 3, 5),
(3, 4, 6), (4, 5, 7), (5, 6, 1), (6, 7, 2), and (7, 1, 3).

Then eaeb = ec or eaeb = −ec according as a does or does not directly
precede b in the unique ordered triple containing a and b.

Nonassociativity

Since

(e1e2)e6 = e4e6 = e3, and

e1(e2e6) = e1e7 = −e3,

it follows that O is not an associative algebra.
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Woolhouse

Wesley Stoker Barker Woolhouse (1809 - 1893)
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Woolhouse and designs

The question, 1844

The Prize Question in the Lady’s and Gentleman’s Diary for 1844, set by
the magazine’s editor, W. S. B. Woolhouse:

Determine the number of combinations that can be made of n
symbols, p symbols in each; with this limitation, that no
combination of q symbols which may appear in any one of them
shall be repeated in any other.

The question repeated, 1846

The Prize Question in the Lady’s and Gentleman’s Diary for 1846,
simplified by Woolhouse:

How many triads can be made out of n symbols, so that no pair
of symbols shall be comprised more than once amongst them?

This time, he got an answer – and how!
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Kirkman

Thomas P. Kirkman (1806-1895)
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1847-1853: Kirkman’s wonder years

1847: “On a problem in combinations” answers Woolhouse’s
question, proves that such a system exists if and only if n = 6m + 1
or n = 6m + 3. (Such systems are called Steiner triple systems.)
Describes the system of seven triples for n = 7 – the (7, 3, 1) design.

1848: Points out that his (7, 3, 1) design is closely related to the
algebra of the octonions. (I told you they were important.)

1850: Poses the so-called Kirkman Schoolgirls Problem, describes
resolvable designs. Cayley publishes a solution. Kirkman describes
how he found his solution.

1852-3: Three papers on combinatorial designs.
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The (7, 3, 1) block design and its discoverers

The design

B1 = {1, 2, 4}
B2 = {2, 3, 5}
B3 = {3, 4, 6}
B4 = {4, 5, 7}
B5 = {5, 6, 1}
B6 = {6, 7, 2}
B7 = {7, 1, 3}

seven elements: {1, 2, 3, 4, 5, 6, 7}
seven blocks: {B1,B2,B3,B4,B5,B6,B7}
each element in three blocks

three elements per block: remember the triples?

each pair of distinct elements in one block together

the smallest nontrivial Steiner triple system

The discoverers: was it . . .

. . . John T. Graves in 1843?

. . . Arthur Cayley in 1845?

. . . Thomas Kirkman in 1847?

Answer:
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The (7, 3, 1) block design and its discoverers

The design

B1 = {1, 2, 4}
B2 = {2, 3, 5}
B3 = {3, 4, 6}
B4 = {4, 5, 7}
B5 = {5, 6, 1}
B6 = {6, 7, 2}
B7 = {7, 1, 3}

seven elements: {1, 2, 3, 4, 5, 6, 7}
seven blocks: {B1,B2,B3,B4,B5,B6,B7}
each element in three blocks

three elements per block: remember the triples?

each pair of distinct elements in one block together

the smallest nontrivial Steiner triple system

The discoverers: was it . . .

. . . John T. Graves in 1843?

. . . Arthur Cayley in 1845?

. . . Thomas Kirkman in 1847?

Answer: all three – no evidence that one influenced the others’ work.
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Steiner

Jakob Steiner (1796-1863)
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Steiner Triple Systems

1853: Steiner’s two-page paper asks questions about triple systems and
more general combinatorial designs.

He states that if such a system exists on n points, then n ≡ 1, 3 mod 6,
but does not prove it.

1859: M. Riesz answers Steiner’s questions with proof – essentially,
Kirkman’s 1847 proof.

Riesz’ and Steiner’s papers appeared in a widely-read journal; Kirkman’s
papers appeared in more obscure journals.
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Fano

Gino Fano (1871-1952)
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Gino Fano’s finite projective plane of order 2

1

42

7

6

53

Projective plane of order n = 2: n + 1 = 3 points on each line
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Whose finite projective plane?

1892: Fano’s fundamental paper on projective geometry includes a
description of finite projective planes.

1857: Kirkman describes an algebraic method for constructing finite
projective planes.

In 1857, Gino Fano’s parents had not yet met.
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Conclusions

The geometry of Julius Plücker was intrinsically connected to the
combinatorics of Thomas Kirkman.

The combinatorics of Kirkman anticipated Jakob Steiner’s questions.

The work of Gino Fano in 1892 provided a link from projective
geometry to both Plücker and the realm of Steiner triple systems.

Fano’s work provided a link via (7, 3, 1) to the combinatorics of
Kirkman, as well as to Hamilton, Graves and Cayley via the normed
algebra of octonions . . .

. . . and consequently to the Diophantine problem of products of sums
of squares.
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. . . Say What?

Don’t go away. We’ll be right back.
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THANK YOU!
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