A CLASSIFICATION OF QUADRATIC ROOK POLYNOMIALS

Alicia Velek Samantha Tabackin

York College of Pennsylvania Advisor: Fred Butler

TOPICS TO BE DISCUSSED

Rook Theory and relevant definitions

General examples

Our Problem

Solution

ROOKS

In chess, a rook can attack in any square in its row or column

ATTACKING VS. NON-ATTACKING ROOKS

Non-attacking rooks

Attacking rooks

We will be focusing on non-attacking rooks

BOARDS AND GENERALIZED BOARDS

Board- a square n x n chessboard

Generalized Board- any subset of a board

ROOK NUMBERS

- The kth rook number r_k(B) counts the number of ways to place k non-attacking rooks on a generalized board B
- We will often denote $r_k(B)$ as r_k when B is clear
- r₀ is always 1
 - Only one way to place 0 rooks on a board

ROOK NUMBERS

- r₁ is the number of squares on B
 - The rook can be placed in any square since there will be no other rook for it to attack

• Once we attain $r_k = 0$, we will always have r_{k+1} , r_{k+2} ,... = 0

 $\mathbf{r}_{k} = \mathbf{0}$ when k> the number of rows or columns in B

EXAMPLE OF ROOK NUMBERS

Consider the following generalized board:

$$r_0 = 1, r_1 = 6$$

There are 8 ways to place 2 rooks on the generalized board so that they are non-attacking.

r₂ = 8

There are 3 ways to place 3 rooks on the generalized board so they are non-attacking

■ r₃ = 3

• thus,
$$r_{5}$$
, $r_{6,...} = 0$

ROOK POLYNOMIAL

We can construct a polynomial which keeps track of all of the rook numbers of a generalized board at once

The r_k's are the coefficients of the x^k terms

$$r_0 + r_1 x + r_2 x^2 + ... + r_{k-1} x^{k-1} + r_k x^k$$

ROOK POLYNOMIAL EXAMPLE

- Considering the rook numbers from our previous example:
 - $r_0 = 1$, $r_1 = 6$, $r_2 = 8$, $r_3 = 3$, $r_4 = 0$, r_{5} , $r_{6,...} = 0$
 - $1+ 6x + 8x^2 + 3x^3$
- The generalized board on the left is from our example.
- Doing some work, we could show that the generalized board on the right also has the same rook polynomial
- Thus, rook polynomials are not unique to a single generalized board

Classify all quadratic polynomials which are the rook polynomial for some generalized board B

• Know $r_0 = 1$, $r_1 =$ number of squares of B

- the form of our polynomials will be: $1 + r_1 x + r_2 x^2$
- Since r₁ can be any positive integer greater than 1 (r₁=1 would lead to a linear rook polynomial), we must find all possible r₂'s such that r₃ = 0.
 - If r₃ ≠ 0, our rook polynomial could be cubic or of higher degree.

Recall that a rook polynomial is not unique to a single generalized board.

Consider the generalized boards below. Each has the same rook polynomial.

- Clearly, if the generalized board is contained within 2 rows, we will have r₃ = 0.
 - Is the converse true? For our purposes... YES
- We proved that for r₃ = 0, the generalized board must either be contained within 2 rows or have the L-shaped form seen below.

Recall that the L-shaped board has the same rook polynomial as the board below.

- Taking into account the equivalences and the requirement of r₃ = 0 we found that it suffices to consider generalized boards which meet the following conditions
 - lie within two rows of a board
 - have spaces which lie consecutive within each row

OBTAINING POSSIBLE r₂'S GIVEN r₁

- Let r₁ represent the number of squares of the generalized board.
- Consider each pair of integers **a** and **b**, where $r_1 = a + b$ and $a \le b$.
 - Note that b=r₁ a
- Then a and b can be arranged such that a squares lie consecutively in one row and b squares lie consecutively in the next row.
- Let i= the number of columns where the two rows overlap

EXAMPLE FOR FINDING r2

- Consider r₁=10
- The possible pairs for a and b are:
 - **1**, 9; 2,8; 3,7; 4,6; 5,5
- Let's look at a = 4 and b = 6

This can be done for all of the pairs listed above

CREATING A FORMULA

Consider again the generalized board below

- r₂ = 2*6 + 2*5
- $r_2 = (4-2) \times 6 + 2 \times (6-1)$
- r₂ =(a-i)*b + i*(b-1)

FORMULA FOR r_2 GIVEN r_1

•When we simplify, we will see

$$r_2 = ab - ib + ib - i$$

• Recall
$$b = r_1 - a$$

Given a first rook number of r₁ every r₂ will have the form

• r_2 =a(r_1 – a) - i , 0 ≤ i ≤ a

EXAMPLE

Let r₁=10. The pairs of *a* and *b* for r₁ are as follows:
1, 9; 2, 8; 3, 7; 4, 6; 5, 5.

• Apply the formula $r_2 = a(r_1 - a) - i$ for each pair.

A generalized board with 10 squares can obtain every value for r₂ between 8 and 25 except for 10, 11, 12, 13, and 17.

LIST OF ALL QUADRATIC ROOK POLYNOMIALS WHERE $r_1 = 10$

- $1 + 10x + 8x^2$
- $1 + 10x + 9x^2$
- $1 + 10x + 14x^2$
- $1 + 10x + 15x^2$
- $1 + 10x + 16x^2$
- $1 + 10x + 18x^2$
- $1 + 10x + 19x^2$
- $1 + 10x + 20x^2$
- $1 + 10x + 21x^2$
- $1 + 10x + 22x^2$
- $1 + 10x + 23x^2$
- **1** + $10x + 24x^2$
- $1 + 10x + 25x^2$

This can be done for any value of r₁

CONCLUSION

Thus, we can construct all possible quadratic rook polynomials using the formula below:

1 +
$$r_1 x$$
 + $[r_1(a - r_1) - i]x^2$

- For positive integers r₁, a, i
- where r₁ > 1
- where $1 \le a \le [r_1/2]$
- where $0 \le i \le a$