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Do you know the FTA?

The Fundamental Theorem of Algebra

A non-constant polynomial with real coefficients has a degree-2 or
degree-1 factor with real coefficients.

Do you know this?

If you know this theorem, shouldn’t you be able to factor, say, x6 + x + 1?

I will discuss an old method for factoring, which was generalized to give
one of the more-algebraic proofs of the FTA.
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More on x6 + x + 1

Here is a graph of y = x6 + x + 1:

No roots to get us started...
We need a quadratic factor.
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Descartes/Hudde method

I will explain an olde method to construct a quadratic factor.

First a bit of history:

1637 — Descartes publishes La Geometrie (100 pages): dictionary
between geometry and algebra.

1659 — Second Latin edition (van Schooten et al) (500 pages):
extensive commentary and many examples.Newton read this edition a
few years later.

Part of the commentary was a letter by Jan Hudde, “On the
reduction of an equation.”

Hudde’s letter contains 22 rules for “reducing” equations in one
variable—essentially for factoring polynomials.
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Descartes/Hudde method: XIX Regula

James Parson (Hood College) Ye Olde FTA April 14, 2012 5 / 12



Descartes/Hudde method: Rule 19

For x6 + x + 1, here is what Hudde tells us to do:

Divide by x2 + yx + w , where y and w are unknowns. We want to
choose real y and w to make the remainder 0.

The remainder is

x(−y5 + 4y3w − 3yw2 + 1) + (−y4w + 3y2w2 − w3 + 1).

(I did this on a computer.)

To get remainder 0, we need to make both coefficients 0 by finding a
solution (y ,w) to this system of equations:

−y5 + 4y3w − 3yw2 + 1 = 0

−y4w + 3y2w2 − w3 + 1 = 0.
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Are we better off?

Some algebra shows that shows that

−y5 + 4y3w − 3yw2 + 1 = 0

−y4w + 3y2w2 − w3 + 1 = 0

is equivalent to

w15 − w12 − 2w10 − 2w9 + w7 + 2w6

+w5 + w4 + w3 − 1 = 0

y = −w6 + w + 1.

Hudde’s algebra was ad hoc, but these days one can do it by computing a
“Groebner basis” in the lexicographic order y > w , which is something like
the row reduction you would use to solve a system of linear equations.(I
used a computer!)
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Solving Hudde’s system

1 First we solve

w15 − w12 − 2w10 − 2w9 + w7 + 2w6 + w5 + w4 + w3 − 1 = 0

for w .Odd degree, and so must have a root by geometry (or IVT).
In fact, there is a root between 0 and 1. A bit of bisection shows that
w = 0.715459 is very nearly a solution.

2 Next we take
y = −w6 + w + 1 ≈ 1.581334.

3 Thus x2 + yx + w ≈ x2 + 1.581334x + 0.715459 is nearly a divisor.
The remainder is

−1.318102 × 10−7x − 4.735616 × 10−8.
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Why do we end up with a degree-15 equation?

Descartes wrote (roughly) that an equation of degree n has n roots,
some “real” and some “imaginary.” (But “imaginary” does not mean
“complex”—until you prove the FTA.)

To get a quadratic factor (not necessarily with real coefficients), we
choose two roots a, b: the product (x − a)(x − b) is a factor.

In particular for x6 + x + 1, there should be
(6
2

)
= 15 possible

quadratic factors, which provide 15 solutions (“real” and
“imaginary”) to Hudde’s system for y and w .

These 15 solutions correspond to the 15 “real” and “imaginary” roots
of our degree-15 equation for w .

Making these notions completely clear had to wait for Lagrange and
Gauss.
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Can we turn Hudde’s method into a proof of FTA?

Oddly even case

Try degree 10: the “quadratic factor” system should reduce to solving a
single equation of degree

(10
2

)
= 45, which is odd. Odd-degree equations

always have real solutions, and so we can construct a real quadratic factor
of any degree-10 polynomial. The argument works for any “oddly even” (2
mod 4) degree.

Other cases

Try degree 12: the “quadratic factor” system should reduce to solving a
single equation of degree

(12
2

)
= 66,which is not odd,but 66 is oddly even,

which case we resolved! This step is the start of an induction argument
due to Foncenex, a student of Lagrange (1759).
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Subsequent history

After Foncenex, there were further clarifications to the argument in
the 18th century—see, especially, Note IX of Lagrange’s Traité de la
résolution des équations numérique de tous les degrés (1808), which
seems to be where Galois learned the theory of equations.

Gauss used the basic outline of Foncenex in his second proof of the
FTA (1815).

A version of this argument (employing a tricky of Laplace) is in van
der Waerden’s Moderne Algebra—and in Dummit and Foote’s
Abstract Algebra.

Emil Artin also provided a well-known variant using Sylow’s theorem
instead of Foncenex’s induction. This variant is popular in
graduate-level algebra textbooks.
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Thanks!

Thanks for coming!
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