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The problem of inverting the discrete exponentiation
map, x 7→ gx mod p, is called the Discrete Logarithm
Problem.

x ← [ y ≡ gx mod p

This is thought to be hard.
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The security of several cryptographic protocols relies
on this assumption.

I Diffie-Hellman Key Agreement
I Blum-Micali Cryptographically Secure Pseudorandom

Number Generator
I ElGamal Encryption
I ElGamal Digital Signature Scheme
I (Elliptic Curve DLP) Elliptic Curve Cryptography
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We are interested in another map that is related to the
ElGamal Digital Signature Scheme.

Traditionally, the ElGamal Digital Signature Scheme is attacked
by calculating discrete logarithms.

However, the attacker could instead try to invert the map
x 7→ xgx mod p, which we call the Discrete Lambert Map.
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We are investigating the functional graph induced by
the DLM.

Much like the discrete exponentiation map, the difficulty of
inverting this map is essential to the security of the ElGamal
DSS.

Question How much do the Discrete Lambert Map-induced
graphs look like “random graphs"?

The more nonrandom the graphs appear, the easier it could be
to invert the DLM.

We start by examining the behavior of these functional graphs,
and then use that information to improve our expected values.
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What is a functional graph?

Definition A functional graph is a directed graph where each
vertex has precisely one directed edge coming out
from it.

In the functional graph of x 7→ xgx (mod p), each vertex, or
node, is an element in (Z/pZ)∗ = {1, ...,p − 1}, where p is
prime.
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For example...

x 7→ x12x (mod 19)
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Some objects of interest in functional graphs are

Connected components
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Some objects of interest in functional graphs are

Cycles
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Some objects of interest in functional graphs are

Fixed points
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Some objects of interest in functional graphs are

Image nodes
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Definition Let g ∈ {1, ...,p − 1}. The order of g is the
smallest positive integer n such that gn ≡ 1
(mod p).

I The order of g divides p − 1.

Example Let g = 7, p = 19. 71 ≡ 7,72 ≡ 11,73 ≡ 1
(mod 19), so the order of 7 is 3.
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Definition A primitive root of a prime p is an integer
g ∈ {1, ...,p − 1} such that g has order p − 1.

I A primitive root g is a generator of (Z/pZ)∗, i.e.
{g,g2, ...,gp−1} = {1,2, ...,p − 1}.

Example Let p = 19. The primitive roots are
2,3,10,13,14,15. They all have order p − 1.

10 / 40



Definition A primitive root of a prime p is an integer
g ∈ {1, ...,p − 1} such that g has order p − 1.

I A primitive root g is a generator of (Z/pZ)∗, i.e.
{g,g2, ...,gp−1} = {1,2, ...,p − 1}.

Example Let p = 19. The primitive roots are
2,3,10,13,14,15. They all have order p − 1.

10 / 40



Definition A primitive root of a prime p is an integer
g ∈ {1, ...,p − 1} such that g has order p − 1.

I A primitive root g is a generator of (Z/pZ)∗, i.e.
{g,g2, ...,gp−1} = {1,2, ...,p − 1}.

Example Let p = 19. The primitive roots are
2,3,10,13,14,15. They all have order p − 1.

10 / 40



Definition Let n be a positive integer. Then g ∈ {1, ...,p − 1}
is an nth power residue if xn ≡ g (mod p) has a
solution.

I When n = 2, we call g a quadratic residue

Example Let p = 19. We see that 5 ≡ 92 (mod 19), so 5 is
a quadratic residue mod 19.
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Basic Behavior
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If g = 1, every x ∈ (Z/pZ)∗ is a fixed point.

Figure: g = 1, p = 11
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In every graph, 1 7→ g and (p − 1) 7→ (p − 1).

Figure: g = 10, p = 11
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Fixed Points
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The fixed points of the DLM functional graphs are
precisely the multiples of the order of g.

Figure: g = 3, p = 13
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The number of fixed points is p−1
n , where n = ordp(g).

Figure: g = 3, p = 13
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Cycles
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If the graph contains an m-cycle, then the sum of the
m nodes in the cycle is divisible by the order of g.

Figure: g = 6, p = 13
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Power Residues
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Some results about power residues

x 7→ xgx (mod p)

Theorem If g has order n, then g is an p−1
n

th
power residue.

Proposition Given that g is an p−1
n

th
power residue, x is an

p−1
n

th
power residue ⇐⇒ xgx is an p−1

n
th

power
residue.

I In other words, all the p−1
n

th
power residues map to each

other.
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Here, g = 12 has order 6 and is a 3rd power residue.

Figure: x 7→ x12x (mod 19)
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Connected Components
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The order of g is an upper bound on the number of

nodes in a connected component that contains a p−1
n

th

power residue.

Figure: x 7→ x12x (mod 19)
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Further results

I Suppose g has order n. Then the group generated by g,
{g,g2, ...,gn}, is a subgroup of (Z/pZ)∗, we’ll call it H.

I The elements of H are precisely the p−1
n

th
power residues

mod p.

I What about cosets of H?

Example Let g = 12, p = 19.

H 1 7 8 11 12 18

2H 2 14 16 3 5 17

4H 4 9 13 6 10 15

All elements of H are p−1
n = 19−1

6 = 3rd power residues.
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The elements of distinct left cosets of H all map to
each other.

Figure: x 7→ x12x (mod 19)
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The order of g is an upper bound on the number of
nodes in any given connected component.

I A connected component of the functional graph consists
entirely of elements of a left coset xH, for some
x ∈ (Z/pZ)∗.

Corollary If g has order n, then p−1
n is a lower bound on the

number of connected components of the
functional graph.

These graphs act more like p−1
n graphs of n nodes each!
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Statistical Analysis
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How much do DLM-induced graphs look like random
graphs?

I We want to gather data about the graphs our mapping
creates.

I We want to compare that data to expected values.

I We want to use statistical software to see if there is a
significant difference between our observations and our
predictions.
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We determined that the following graph characteristics
would be most important to study.

Number of components
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We determined that the following graph characteristics
would be most important to study.

Total distance to cycle
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We determined that the following graph characteristics
would be most important to study.

Number of image nodes
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We determined that the following graph characteristics
would be most important to study.

Number of terminal nodes
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We determined that the following graph characteristics
would be most important to study.

Number of fixed points
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In addition to total sum statistics, we are also looking
at maxima and averages.

I Maximum cycle length

I Maximum tail length

I Average cycle length

I Average tail length
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After determining the relevant graph characteristics,
we found results from literature that give asymptotic
forms for the expected values of specific random
graph characteristics.

I Number of components ∼ 1
2 ln n

I Number of cyclic nodes ∼
√

πn
2

I Number of terminal nodes ∼ e−1n

I Tail length, cycle length ∼
√

πn
8

I Maximum tail length ∼
√

2πn ln 2

I Maximum cycle length ∼ 0.78248
√

n
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For our analysis, we used the first twenty safe primes
greater than 40,000. For each prime, we gathered
data for the graphs from g = 2 to g = p − 2.

I We excluded g = 1 and g = p − 1 from our analysis since
we already know the precise structure of those graphs.

I We chose safe primes since we are interested in analyzing
our results based on the order of g: order p − 1 for
primitive roots, and order p−1

2 for quadratic residues.

I After calculating the averages of the graphs we generated,
we calculated the expected means for each order and for
each graph characteristic.
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After we collected the data, we used Minitab to
analyze our results.

Some statistical methods we used include:

I t-tests - How similar is our observed mean to our
hypothesized mean?

I Probability plots - Do our t values have the expected mean
and standard deviation? Is our data normally distributed?
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Initially, our data did not seem to match the expected
values very well.

µ = 1.215, σ = 0.8225
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Initially, our data did not seem to match the expected
values very well.
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We attributed this discrepancy to bad expected values.

I We used Maple to calculate a second term for the
asymptotic approximation for each of our graph
characteristics.

I After adding this term to the approximation, we
immediately saw changes to our statistical analysis.

I Some characteristics, like the average number of terminal
and image nodes, were not greatly affected by this addition
of the second term.
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After the addition of the second term, our data looked
much better.

µ = 0.178, σ = 0.8255
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After the addition of the second term, our data looked
much better.

µ = −0.363, σ = 0.8560
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Conclusions

I Some characteristics of the DLM-induced graphs do seem
to exhibit some slight nonrandomness.

I It’s unlikely that this nonrandomness is anything that could
be exploited quickly or efficiently.
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Future Work

We will...

I manipulate the generating function for the number of
image nodes to take advantage of the known fixed point.

I use methods from literature to construct expected
variances for different characteristics of random functional
graphs.
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Thank you!

Figure: g = 15, p = 19
40 / 40


