Geometrical Representation of Election Results By Sophie Gorman The Catholic University of America

Goal of voting theory: to identify and select what voters want by means of a social choice function, or voting method

Note that voting theory takes into account a voter's complete preference rankings, C₁ through C_n.

M=total number of voters

Condorcet winner: a candidate who wins every pairwise comparison, or head-tohead race

Condorcet winners don't always exist, and when they do, they don't always win.

Example:

V ₁	V ₂	V ₃
C ₁	C ₃	C ₂
C ₂	C ₁	C ₃
C ₃	C ₂	C ₁

 $C_1 > C_2$

- $C_2 > C_3$
- **C**₁< **C**₃

A loss of transitivity (C_i > C_i) is called a Condorcet Cycle Criteria: standards for a voting method

Examples:

Neutrality

Anonymity

Pareto: If all voters prefer C_i to C_j , then C_j may not win if C_i doesn't as well.

...and many more

Three compelling criteria:

Pareto

Anonymity

Independence of Irrelevant Alternatives: How C_i and C_j fare compared to each other is irrelevant to how C_k fares Arrow's Theorem (1951)

A voting system cannot satisfy anonymity, independence, and Pareto at the same time. Two candidates:

C₁------C₂

Region: strict preference region (one possible ranking of candidates)

Populated region: one with at least one voter who chose that ranking

Three candidates:

Barycentric subdivision into six regions

(Image from http://mathdl.maa.org/mathDL/4/? pa=content&sa=viewDocument&nodeId=1195&pf=1)

Four candidates:

Barycentric subdivision into 24 regions

Condorcet domains for three candidates

Proposition: Suppose a profile has ≤ 2 populated regions. Then no loss of transitivity will occur.

Equivalent statement: At least 3 populated regions are necessary to produce a loss of transitivity. **Definition: Condorcet Domain**

A Condorcet Domain is one of two subsets:

The union of $C_1 > C_2 > C_3$, $C_2 > C_3 > C_1$, $C_3 > C_1 > C_2$.

The union of $C_1 > C_3 > C_2$, $C_3 > C_2 > C_1$, $C_2 > C_1 > C_3$.

Proposition:

- If each region of the Condorcet
 Domain is populated by an equal number of votes, a loss of transitivity will occur.
- 2. These domains are the only unions of regions which satisfy this property.

Proposition [G]:

Assume all votes are in a Condorcet Domain.

Let N_i=the number of votes in a SPR

N_i< M/2 for all N_i if and only if a Condorcet cycle will occur.

Condorcet domains for n candidates

A Condorcet Domain is the union of the SPRs obtained by cyclicly permuting n times a linear ordering of candidates.

For example:

How many Condorcet Domains exist in an election with n candidates?

Proposition [G]:

Total number of SPRs/n

- = n!/n
- =(n-1)!

Ideas for further study:

Condorcet cycles with populated regions outside of Condorcet Domains

Condorcet cycles with <n candidates

Deeper insight into voting paradoxes, especially Arrow's Theorem

Sources:

Basic Geometry of Voting and "Condorcet Domains: A Geometric Perspective" by Donald G. Saari