Sums of squares, the octonions, and (7, 3, 1)

Ezra Brown Virginia Tech

MD/DC/VA Spring Section Meeting Stevenson University April 14, 2012

- Sums of squares
- Normed algebras
- (7,3,1)
- 1-, 2- and 4-square identities and their algebras
- 8 squares
- The octonions
- The connection with (7,3,1)

Sums of squares

- For which *n* can the product of two sums of *n* squares always be written as a sum of *n* squares?
- Answer (A. Hurwitz, 1898): For n = 1, 2, 4 and 8 and for no other positive integers.
- Theorem: Each sums-of-squares identity is associated with a normed algebra over the real numbers.

- A *real algebra* is a vector space over \mathbb{R} that has a vector multiplication that distributes over vector addition.
- A normed algebra is a real algebra \mathbb{A} equipped with a mapping $N : \mathbb{A} \to \mathbb{R}$ such that N(uv) = N(u)N(v) for all $u, v \in \mathbb{A}$.
- \bullet The real numbers $\mathbb R$ and the complex numbers $\mathbb C$ both have such norms.
- We'll meet the other two shortly.

B_1	124
<i>B</i> ₂	235
<i>B</i> ₃	346
<i>B</i> ₄	457
B_5	561
B_6	672
<i>B</i> ₇	713

The (7, 3, 1) block design is:

- a set V of 7 items, and a collection of 7 subsets of V called *blocks*, such that
- each block contains three items,
- each item is in three blocks, and
- each pair of items is in exactly one block together.

The incidence matrix for (7, 3, 1)

• The incidence matrix for (7,3,1) is the $7 \times 7(0,1)$ matrix M with $M_{ij} = 1$ if and only if B_i contains the *j*th object:

	1	2	3	4	5	6	7	
B_1	1	1	0	1	0	0	0	124
<i>B</i> ₂	0	1	1	0	1	0	0	235
<i>B</i> ₃	0	0	1	1	0	1	0	346
<i>B</i> ₄	0	0	0	1	1	0	1	457
B_5	1	0	0	0	1	1	0	561
<i>B</i> ₆	0	1	0	0	0	1	1	672
<i>B</i> ₇	1	0	1	0	0	0	1	713

Remember this, because it's important.

One and two squares

One square

- The identity: $a^2 \cdot b^2 = (ab)^2$
- The algebra: \mathbb{R} , the real numbers
- The norm: $N(r) = r^2$.

Two squares

- The identity: $(a^2 + b^2)(c^2 + d^2) = (ac bd)^2 + (ad + bc)^2$, due to Diophantus (3rd century) and Brahmagupta (7th century)
- The algebra: $\mathbb{C}=\{a+bi|a,b\in\mathbb{R},i^2=-1\}$, the complex numbers
- The norm: $N(a + bi) = a^2 + b^2$
- The origins of \mathbb{C} : solution of the cubic, differential equations, the geometric complex plane

• The identity, due to Euler (1748):

$$(a_1^2 + a_2^2 + a_3^2 + a_4^2)(b_1^2 + b_2^2 + b_3^2 + b_4^2) =$$

= $(a_1b_1 - a_2b_2 - a_3b_3 - a_4b_4)^2 + (a_1b_2 + a_2b_1 + a_3b_4 - a_4b_3)^2$
+ $(a_1b_3 - a_2b_4 + a_3b_1 + a_4b_2)^2 + (a_1b_4 + a_2b_3 - a_3b_2 + a_4b_1)^2$

- The algebra: the quaternions $\mathbb{H} = \{a_1 + a_2i + a_3j + a_4k | a_1, a_2, a_3, a_4 \in \mathbb{R}, i^2 = j^2 = k^2 = ijk = -1\}$
- The norm: $N(a_1 + a_2i + a_3j + a_4k) = a_1^2 + a_2^2 + a_3^2 + a_4^2$
- The origins: W. R. Hamilton, who -
 - ullet failed in an attempt to define a multiplication on \mathbb{R}^3 , and then —
 - succeeded in defining a *noncommutative* multiplication on \mathbb{R}^4 .

 $(a_1^2 + a_2^2 + a_3^2 + a_4^2 + a_5^2 + a_6^2 + a_7^2 + a_8^2)$ $\times (b_1^2 + b_2^2 + b_2^2 + b_4^2 + b_5^2 + b_6^2 + b_7^2 + b_9^2)$ $=(a_1b_1-a_2b_2-a_3b_3-a_4b_4-a_5b_5-a_6b_6-a_7b_7-a_8b_8)^2$ $+(a_1b_2+a_2b_1+a_3b_4-a_4b_3+a_5b_6-a_6b_5-a_7b_8+a_8b_7)^2$ $+(a_1b_3-a_2b_4+a_3b_1+a_4b_2+a_5b_7+a_6b_8-a_7b_5-a_8b_6)^2$ $+(a_1b_4+a_2b_3-a_3b_2+a_4b_1+a_5b_8-a_6b_7+a_7b_6-a_8b_5)^2$ $+(a_1b_5 - a_2b_6 - a_3b_7 - a_4b_8 + a_5b_1 + a_6b_2 + a_7b_3 + a_8b_4)^2$ $+(a_1b_6+a_2b_5-a_3b_8+a_4b_7-a_5b_2+a_6b_1-a_7b_4+a_8b_3)^2$ $+(a_1b_7+a_2b_8+a_3b_5-a_4b_6-a_5b_3+a_6b_4+a_7b_1-a_8b_2)^2$ $+(a_1b_8-a_2b_7-a_3b_6+a_4b_5-a_5b_4-a_6b_3+a_7b_2+a_8b_1)^2$

• Due to F. Degen (1818), J. T. Graves (1843) and A. Cayley (1845)

- The algebra: the octonions \mathbb{O} , where $\mathbb{O} = \{a_0 + a_1e_1 + \ldots + a_7e_7 | a_0, \ldots, a_7 \in \mathbb{R}, e_t^2 = -1\};$ the e_t are called the octonion units
- The norm:

 $N(a_0 + a_1e_1 + \dots + a_7e_7) = a_1^2 + a_1^2 + a_2^2 + a_3^2 + a_4^2 + a_5^2 + a_6^2 + a_7^2$

- The origins: J. T. Graves, who
 - received Hamilton's letter announcing the quaternions, and then -
 - went him one better by defining a noncommutative and nonassociative multiplication on $\mathbb{R}^8.$
- The multiplication is given by the following table.

*	1	e ₁	e ₂	e3	e4	e ₅	e ₆	e ₇
1	1	e_1	e ₂	e ₃	e4	<i>e</i> 5	e ₆	e ₇
e ₁	e_1	-1	e ₄	e ₇	$-e_2$	e ₆	$-e_5$	$-e_3$
e ₂	e ₂	$-e_4$	-1	e ₅	e ₁	$-e_3$	e ₇	- <i>e</i> ₆
e 3	e ₃	— <i>е</i> 7	$-e_{5}$	-1	<i>e</i> 6	e ₂	$-e_4$	e_1
e ₄	<i>e</i> 4	e ₂	$-e_1$	$-e_{6}$	-1	e ₇	e ₃	$-e_{5}$
e 5	<i>e</i> ₅	$-e_6$	e ₃	$-e_{2}$	—e ₇	-1	e_1	e ₄
e ₆	e ₆	<i>e</i> 5	-e ₇	e ₄	$-e_3$	$-e_1$	-1	e ₂
e7	<i>e</i> 7	e ₃	<i>e</i> 6	$-e_1$	<i>e</i> 5	$-e_4$	$-e_{2}$	-1

Multiplication table for the octonion units.

This looks very strange ...

The table as a matrix of signs of the e_i

... but looks are deceptive.

■ Remove the top row and left column, replace each −1 by a zero, and move the bottom row to the top. Here's the result:

\dots becomes the incidence matrix for (7,3,1)

	1	2	3	4	5	6	7	
B_1	1	1	0	1	0	0	0	124
<i>B</i> ₂	0	1	1	0	1	0	0	235
<i>B</i> ₃	0	0	1	1	0	1	0	346
<i>B</i> ₄	0	0	0	1	1	0	1	457
<i>B</i> ₅	1	0	0	0	1	1	0	561
<i>B</i> ₆	0	1	0	0	0	1	1	672
<i>B</i> ₇	1	0	1	0	0	0	1	713

I told you it was important.

- The following are the seven blocks of the (7,3,1) design, with the given internal orderings: (1,2,4), (2,3,5), (3,4,6), (4,5,7), (5,6,1), (6,7,2), and (7,1,3).
- For distinct $i, j \in \{1, 2, 3, 4, 5, 6, 7\}$, define $e_i e_j = e_k = -e_j e_i$, where (i, j, k) is the unique block containing i and j, in the given internal ordering.
- What is e_4e_6 ? The relevant block is (3, 4, 6), so $e_4e_6 = e_3$.
- What is e_5e_1 ? The relevant block is (5, 6, 1), so $e_5e_1 = -e_1e_5 = -e_6$.

That's why "the octonion units" is a name for (7,3,1). But wait — there's another reason.

Seven quaternion subalgebras of ${\mathbb O}$

- \mathbb{O} contains seven complex subalgebras $\mathbb{C}_n = \mathbb{R}\langle e_n \rangle$ and seven quaternion subalgebras $\mathbb{H}_n = \mathbb{R}\langle e_t, e_u, e_v \rangle$, where $\{t, u, v\}$ is a block in (7,3,1)
- Each \mathbb{H}_n contains three of the \mathbb{C}_k .
- Each \mathbb{C}_k is contained in three of the \mathbb{H}_n .
- Each pair $\{\mathbb{C}_k, \mathbb{C}_m\}$ is contained in a unique \mathbb{H}_n together.

The (7,3,1) design sits inside \mathbb{O}

- The above design of subalgebras of \mathbb{O} has the same incidence matrix as (7,3,1).
- The two designs are the same!

THANK YOU!