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What To Expect

Sums of squares

Normed algebras

(7, 3, 1)

1-, 2- and 4-square identities and their algebras

8 squares

The octonions

The connection with (7, 3, 1)
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A question about sums of squares

Sums of squares

For which n can the product of two sums of n squares always be
written as a sum of n squares?

Answer (A. Hurwitz, 1898): For n = 1, 2, 4 and 8 — and for no other
positive integers.

Theorem: Each sums-of-squares identity is associated with a normed
algebra over the real numbers.
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Normed algebras

A real algebra is a vector space over R that has a vector
multiplication that distributes over vector addition.

A normed algebra is a real algebra A equipped with a mapping
N : A→ R such that N(uv) = N(u)N(v) for all u, v ∈ A.

The real numbers R and the complex numbers C both have such
norms.

We’ll meet the other two shortly.
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The (7, 3, 1) block design

B1 124

B2 235

B3 346

B4 457

B5 561

B6 672

B7 713

The (7, 3, 1) block design is:

a set V of 7 items, and a collection of 7 subsets of V called blocks,
such that

each block contains three items,

each item is in three blocks, and

each pair of items is in exactly one block together.
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The incidence matrix for (7, 3, 1)

The incidence matrix for (7, 3, 1) is the 7× 7 (0, 1) matrix M with
Mij = 1 if and only if Bi contains the jth object:

1 2 3 4 5 6 7

B1 1 1 0 1 0 0 0 124

B2 0 1 1 0 1 0 0 235

B3 0 0 1 1 0 1 0 346

B4 0 0 0 1 1 0 1 457

B5 1 0 0 0 1 1 0 561

B6 0 1 0 0 0 1 1 672

B7 1 0 1 0 0 0 1 713

Remember this, because it’s important.
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One and two squares

One square

The identity: a2 · b2 = (ab)2

The algebra: R, the real numbers

The norm: N(r) = r2.

Two squares

The identity: (a2 + b2)(c2 + d2) = (ac − bd)2 + (ad + bc)2, due to
Diophantus (3rd century) and Brahmagupta (7th century)

The algebra: C = {a + bi |a, b ∈ R, i2 = −1}, the complex numbers

The norm: N(a + bi) = a2 + b2

The origins of C: solution of the cubic, differential equations, the
geometric complex plane
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Four squares

The identity, due to Euler (1748):

(a21 + a22 + a23 + a24)(b21 + b22 + b23 + b24) =

= (a1b1 − a2b2 − a3b3 − a4b4)2 + (a1b2 + a2b1 + a3b4 − a4b3)2

+(a1b3 − a2b4 + a3b1 + a4b2)2 + (a1b4 + a2b3 − a3b2 + a4b1)2

The algebra: the quaternions
H = {a1 + a2i + a3j + a4k |a1, a2, a3, a4 ∈ R, i2 = j2 = k2 = ijk = −1}
The norm: N(a1 + a2i + a3j + a4k) = a21 + a22 + a23 + a24
The origins: W. R. Hamilton, who —

failed in an attempt to define a multiplication on R3, and then —
succeeded in defining a noncommutative multiplication on R4.
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Eight squares

(a21 + a22 + a23 + a24 + a25 + a26 + a27 + a28)

×(b21 + b22 + b23 + b24 + b25 + b26 + b27 + b28)

= (a1b1 − a2b2 − a3b3 − a4b4 − a5b5 − a6b6 − a7b7 − a8b8)2

+(a1b2 + a2b1 + a3b4 − a4b3 + a5b6 − a6b5 − a7b8 + a8b7)2

+(a1b3 − a2b4 + a3b1 + a4b2 + a5b7 + a6b8 − a7b5 − a8b6)2

+(a1b4 + a2b3 − a3b2 + a4b1 + a5b8 − a6b7 + a7b6 − a8b5)2

+(a1b5 − a2b6 − a3b7 − a4b8 + a5b1 + a6b2 + a7b3 + a8b4)2

+(a1b6 + a2b5 − a3b8 + a4b7 − a5b2 + a6b1 − a7b4 + a8b3)2

+(a1b7 + a2b8 + a3b5 − a4b6 − a5b3 + a6b4 + a7b1 − a8b2)2

+(a1b8 − a2b7 − a3b6 + a4b5 − a5b4 − a6b3 + a7b2 + a8b1)2

Due to F. Degen (1818), J. T. Graves (1843) and A. Cayley (1845)
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Eight squares, continued

The algebra: the octonions O, where
O = {a0 + a1e1 + . . . + a7e7|a0, . . . , a7 ∈ R, e2t = −1}; the et are
called the octonion units

The norm:
N(a0 + a1e1 + · · ·+ a7e7) = a21 + a21 + a22 + a23 + a24 + a25 + a26 + a27
The origins: J. T. Graves, who —

received Hamilton’s letter announcing the quaternions, and then —
went him one better by defining a noncommutative and nonassociative
multiplication on R8.

The multiplication is given by the following table.
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Multiplying the octonion units

∗ 1 e1 e2 e3 e4 e5 e6 e7
1 1 e1 e2 e3 e4 e5 e6 e7
e1 e1 −1 e4 e7 −e2 e6 −e5 −e3
e2 e2 −e4 −1 e5 e1 −e3 e7 −e6
e3 e3 −e7 −e5 −1 e6 e2 −e4 e1
e4 e4 e2 −e1 −e6 −1 e7 e3 −e5
e5 e5 −e6 e3 −e2 −e7 −1 e1 e4
e6 e6 e5 −e7 e4 −e3 −e1 −1 e2
e7 e7 e3 e6 −e1 e5 −e4 −e2 −1

Multiplication table for the octonion units.

This looks very strange . . .
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The table as a matrix of signs of the ei

. . . but looks are deceptive.

H =



1 1 1 1 1 1 1 1
1 −1 1 1 −1 1 −1 −1
1 −1 −1 1 1 −1 1 −1
1 −1 −1 −1 1 1 −1 1
1 1 −1 −1 −1 1 1 −1
1 −1 1 −1 −1 −1 1 1
1 1 −1 1 −1 −1 −1 1
1 1 1 −1 1 −1 −1 −1


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The matrix, altered slightly . . .

Remove the top row and left column, replace each −1 by a zero, and
move the bottom row to the top. Here’s the result:

1 1 0 1 0 0 0
0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1
1 0 0 0 1 1 0
0 1 0 0 0 1 1
1 0 1 0 0 0 1


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. . . becomes the incidence matrix for (7, 3, 1)

1 2 3 4 5 6 7

B1 1 1 0 1 0 0 0 124

B2 0 1 1 0 1 0 0 235

B3 0 0 1 1 0 1 0 346

B4 0 0 0 1 1 0 1 457

B5 1 0 0 0 1 1 0 561

B6 0 1 0 0 0 1 1 672

B7 1 0 1 0 0 0 1 713

I told you it was important.
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Octonion multiplication, explained

The following are the seven blocks of the (7, 3, 1) design, with the
given internal orderings: (1, 2, 4), (2, 3, 5), (3, 4, 6), (4, 5, 7), (5, 6, 1),
(6, 7, 2), and (7, 1, 3).

For distinct i , j ∈ {1, 2, 3, 4, 5, 6, 7}, define eiej = ek = −ejei , where
(i , j , k) is the unique block containing i and j , in the given internal
ordering.

What is e4e6? The relevant block is (3, 4, 6), so e4e6 = e3.

What is e5e1? The relevant block is (5, 6, 1), so e5e1 = −e1e5 = −e6.

That’s why “the octonion units” is a name for (7, 3, 1).
But wait — there’s another reason.
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O is another name for (7, 3, 1)

Seven quaternion subalgebras of O
O contains seven complex subalgebras Cn = R〈en〉 and seven
quaternion subalgebras Hn = R〈et , eu, ev 〉, where {t, u, v} is a block
in (7, 3, 1)

Each Hn contains three of the Ck .

Each Ck is contained in three of the Hn.

Each pair {Ck ,Cm} is contained in a unique Hn together.

The (7, 3, 1) design sits inside O
The above design of subalgebras of O has the same incidence matrix
as (7, 3, 1).

The two designs are the same!
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THANK YOU!
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