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Lyapunov consistency: A form of nonlinear stability

A more well known form of nonlinear stability is entropy stability:
* Mostly used in CFD applications.

* Practically allows for the derivation of a bound on solutions [1, 2].
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Entropy stability in practice
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Figure: Numerical stability for the Taylor-Green vortex (TGV), left, and homogeneous-isotropic
turbulence (HIT), right. / = success, x = failures. The entropy stable discretization is noted
ES-C. The discretization that uses the Kennedy and Gruber (2008) flux is noted SF-KG. The

standard discontinuous collocation is noted DC. Adapted from [3]. 324



ODE to PDE: reaction equation

We are interested in equations the form

ou

ot
With globally asymptotically stable equilibrium points Ueq, and a Lyapunov function V
s.t.

F (U) , te [to, Tf). 3)

av
V>0 — <0 4
>0, i = 4
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ODE to PDE: reaction-diffusion equation

We extend the reaction equation to a PDE via a diffusion term

ou 0 ou

Im=1

This system inherits the ODE equilibrium points because they are constant in space.
Define the Lyapunov functional

B _ dv
V= / Vds2, we would like V >0, and ar <0 (6)
Q

5/24



Lyapunov consistency

Define W = dV/dU. We consider systems

where
1. WIF<0
2. Vis convex and locally positive Theorem
definite ) ) ) e
d T > 0. where K - — ¢ Given the previous assumptions, if V is
3. M+M" >0 where Mim = Cim locally positive definite, dV /dt < 0, and
4. appropriate boundary conditions can |U|| = +00 = V(U) — +o0, then,
be found such that Ueq = 0 is globally asymptotically stable.
dim
. 0w
f{ Z W Cme—ngdl <0 (7)
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Lyapunov consistency

We multiply the PDE from the left by the Lyapunov variables W = dV /dU and integrate
over the domain

d
ou ) ou
Wl—dx= | WFU)+wW" - ) dx.
[ = [ wE@ 2 o <C”’"axm) " @

Using integration by parts and applying the previous assumptions

v

< | zZ"MZdx<0 9
o = /Q x <0, 9)

T
— |OW . oW
where Z = [Bxl’ ’8xm} .
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Semi-discrete Lyapunonv consistency: SBP operators

SBP operators define a discrete integration (quadrature) and high-order operators

1
|x|% =x"Px, D=P'Q, Q+Q = 0 |, D¥=j¥lVji<p. (10
1

SBP operators are capable of inheriting the bounds into the semi-discrete
representation by mimicing the integration by parts property discretely [4].
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Semi-dicrete Lyapunov consistency: scheme

General form (curvilinear coordinates shown in the paper)

dim
du
o =Jit D DilCnlkO, + SATy + SATrp + STy, (11)
Im=1
where
Ok = Dpwy + SATy. (12)

SAT are penalty terms that apply at the interfaces between elements.
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Semi-discrete Lyapunov consistency

Utilizing the discrete counterparts to the continuous operators,

K dim

K
> 1TR dv:< Zw;jpkfk -y (@5‘)T CmPiOK, + ST,

k=1 k=11m=1

where ST are surface terms.

(13)
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Semi-discrete Lyapunov consistency: interpretation

RD system with:
1. WIF<0
2. V > 0is convex
3. M+MT >0
4. ST<O0
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By bradeazy [5].

Theorem

Given the previous assumptions, if V
is locally positive definite,

dV/dt <0, and ||u|| = +o0 =
V(u) = +o0, then, ueqg = 0'is
globally asymptotically stable.
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Relaxation Runge-Kutta: fully discrete Lyapunov
stability

Figure: The Lyapunov functional
evaluated at the RK update may miss
the manifold trajectory. The RRK

n(u™ method corrects this by adjusting At
with the root v ~ 1.

12/24
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Relaxation Runge-Kutta: fully discrete Lyapunov
stability

We compute a v, at every timestep to adjust the update stepsize At

Untt =y —i—%AthFl, (14)
i=1

Where ~, is the positive root of

(’y)—n<U"+'yAthF>—n ") ’yAth (' (¥ (15)

i=1

More on RRK methods for general functionals in [6].
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RRK: important results

The RRK scheme:
+ inherits the Lyapunov functional, and is dissipation preserving
+ the local error is O(AtP*1)
+ has a positive root y
+ fixed points retain the stability properties of the ODE equilibriums
+ does not have spurious solutions
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Numerical results: Sl epidemiology

From [7, 8]
U=1s1", (16a)
T
SI SI
F=|vR I (1-— I))—R —vS,Rop—— —1 16b
PRASD (1= (41) - Ry v Rag 1] . (6
[ Ds O
c_[ 0 DJ, (16¢)

Where Ry, Rg and v depend on the parameters:
* r, the susceptible growth rate
+ (3, the transmission rate
* u, the death rate
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Numerical results: Sl epidemiology
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Figure: Temporal evolution
of the maximum norm of
the solution, (S, 1),
Lyapunov functional, V, and
time derivative of the
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the SI PDE model.
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Numerical results: Sl epidemiology
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Numerical results: tumor M1 virology

The model consists of [9]

+ S nutrients consentration
« N normal cells

« T tumor cells
* M1 virus

*+ Z cytotoxic T lymphocytes
(CTS)
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Numerical results: tumor M1 virology

Figure: Brain mesh
constructed from MRI
images using SimNIBS [10].
The total number of
hexahedral elements is

~ 3.2899 x 10°, and the
number of DOFs is

~ 18.9496 x 10°.
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Numerical results: tumor M1 virology
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Figure: Temporal evolution
of the nutrients, §, normal
cells, N, tumor cells, T, free
M1 virus, M1, immune
response, Z.
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Numerical results: tumor M1 virology
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Numerical results: tumor M1 virology
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Figure: Response of the tumor to the oncolytic M1 virotherapy at t = O (initial condition),

t=32.67,andt = 247.96.
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