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Experimental Design
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Prototypical RNA-seq Dataset
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N
How to Handle the Available Covariates?

@ Including all available covariates (Full)
@ Excluding all available covariates (OnlyLine)

@ Backward selection that maximizes the number of DE genes with respect to
the main factor of interest (BS15, Nguyen et al. 2015)
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N
Our Proposed Method (Nguyen and Nettleton 2024+-)

@ Using limma-voom (Law et al. (2014)) for differential expression analysis to
obtain vectors of p-values of tests for significance of regression coefficients
w.r.t each of the covariates

@ Selecting the most relevant covariates by a backward selection strategy
intending to control the false seletion rate (FSR) using pseudo-variables (Wu
et al. (2007), ‘Controlling Variable Selection by the Addition of
Pseudovariables’, JASA)

@ Wu et al. (2007) method published for one response variable

@ We extend Wu et al. (2007)'s method to thousands of response variables
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Measure of Covariate Relevance
Definition

With 1 representing an indicator function, a relevance measure for covariate j is
defined as
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|
Backward Selection to Control FSR

@ Run backward selection procedure using r(-) on kt covariates of X

o Let BS(X,\) denote the subset of X selected by this backward selection, i.e.,
the largest subset of X for which each variable has r-value at least A

@ Define S(\) = Card{BS(X,\)}. Then S(\) = R(\) + /()\), where R(\) and
I(X\) denote the number of selected relevant and irrelevant covariates,
respectively

E(I(N)

o False selection rate (FSR) is calculated as a()\) = EGON:D)

o Calculate the tuning parameter A, to control FSR at level ayg

Ao =inf{A:a(N) <ap}.
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Estimating FSR |

Generate B sets of kp pseudo-variables Z,,

E(lp,(M)

Define ap(X) = ga5,, 00

where

@ Rp p(A): number of truly relevant covariates selected from X, Z,
@ Ip p(A): number of truly irrelevant covariates selected from X, Z,
@ /5 ,(X): number of pseudo-covariates selected from X, Z,

® Spb=Rpp(A) +1pp(N) +1p ,(N)
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Estimating FSR I

Assumptions

(A1) E(I(N)) = E(lpp(N)) = kuE(Ip ,(X))/kp, where ky is the unknown number
of truly irrelevant covariates

(A2) E(Rp(N)) = E(R(N))

o (A1) & (A2) imply: ap()) = 200

o Let T5(A) = BXE, 3,(A), 5p(A) = B L., Sps(N)

()
1+5P()\)

e Estimate ap(A) by ap()\) =
o If ky is known, estimate () by solving

pré()\)

= e+ ke
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Generating Pseudo-covariates Z = (zy,. .., 2,)

e Option 1 (WN): zy,..., 2, i.id. ~N(0,1)

@ Option 2 (RX): The n rows of Z are obtained by randomly permuting the rows
and the columns of X

@ Options 3 & 4 (OWN & ORX): (I - Hx)Z, where Hx = X(X'X)™' X', where
Z is generated either by option 1 or 2, respectively
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RFI RNA-seq Data Analysis

Table 1: Covariates removed from the full model and their r values at each iteration of the
backward selection algorithm applied to the RFI RNA-seq dataset.
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Simulation Study - Setting

Table 2: Six simulation scenarios corresponding to six sets of truly relevant covariates.

Number of relevant covariates kg Relevant covariates
0
1 Mono
2 Concb, Mono
6 Baso, RINa, Block, Neut, Concb, Mono
7 Lymp, Baso, RINa, Block, Neut, Concb, Mono
8 RFI, Lymp, Baso, RINa, Block, Neut, Concb, Mono

@ Number of genes: 2000

@ Number of replications: 100
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Simulation Study - FSR Results

FSR Variable Selection Method Results
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Figure 1: The figure displays the variable selection performance of four variants of the
proposed method and BS15.
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Simulation Study - Differential Expression Analysis Results
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Differential Expression Analysis Results
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Figure 2: The figure presents the performance of differential expression analysis of the
twelve methods.
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Conclusion

@ The proposed covariate selection method control FSR well

@ The selected model has good performance in identifying DE genes in terms of
o FDR control

o Ability to distinguish EE genes and DE genes
@ The proposed method is available at github.com/ntyet/csrnaseq

@ Contact: Yet Nguyen, ynguyen@odu.edu
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Thank you!
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