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Spectral Analysis of the Graph Laplacian on Homogeneous Trees
‘— Introduction

Graph Laplacian

The Graph Laplacian is the discrete analog of the Laplacian:

» Ay, =A-D
> [Agu]x = ZyNX Uy — Ux = —deg(x)ux + Zywx Uy

Figure: Ag =A—-D = (
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— Introduction

Finite vs. Infinite Dimensions

» Spectrum of an operator Ag: The set of A for which A, — X is not invertible.

v

Finite-dimensional: Eigenvalues
Infinite-dimensional:

» Point Spectrum (isolated eigenvalues of finite multiplicity)
» Continuous Spectrum (depends on the space under consideration)

v

1
¢P-space: The space of u for which (>, |ux|P)? converges.

v

v

Spectrum depends on choice of p
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‘—Homogeneous Trees

Infinite Homogeneous Trees

» deg(x) =q Vx

» A€ [-q9—2yq—1,—qg+ 2v/q — 1] (Lubotzky, Phillips, Sarnak)
» Main question: What, if any relationship is there between the spectrum of the
infinite tree and a truncated version?
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Figure: Homogeneous Tree of degree 3
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—Homogeneous Trees

Recurrence Relations: Sketch of Spectrum Proof

> Take a level-symmetric function, R
obtain a recurrence \

> (g — D) upq1 + uk—1 — qui = Aug

+A 1
> Ukl = %Uk — g—1Uk-1
g+ £/ (g+X)2—4(q—1)
» Roots are rp = (g (9= X

2(q—-1) ya

» (2 decay properties are equivalent to
el = Ir-|

» Therefore )\ is within the specified

nterval Figure: Neighborhoods of nodes in a

Homogeneous Tree
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‘—Homogeneous Trees

Truncated Homogeneous Trees

Dirichlet: deg(x) =q Vx Neumann: deg(x) =qorl Vx

Figure: Homogeneous tree of degree 3 with 4

.. . Figure: Homogeneous tree of degree 3 with 4
levels, Dirichlet truncation g g &

levels, Neumann truncation
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— Main Result and Proof

Main Result

Theorem: The eigenvalues of the Graph Laplacian on a Dirichlet homogeneous tree of
degree g are within the £2 spectrum of the Graph Laplacian on the infinite
homogeneous tree of degree g
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Figure: Dirichlet Eigenvalues for Homogeneous Trees of degree 3, n levels. The /2 spectrum
shown as oco.
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— Main Result and Proof

Finite Recurrence: Sketch of Proof

> Assume a symmetric eigenvector A

» Propagate recurrence

.oy = g+A£4/(g+X)2—4(q—1)

2(q-1)

» Solution must match boundary A
conditions L

» Obtain a constraint on r4

> Infer constraint on A Figure: Neighborhoods of nodes in a
Homogeneous Tree
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— Main Result and Proof

Symmetric Case

Symmetric Eigenvector Structure

» Top node is 1
> All subsequent levels are symmetric

Figure: Eigenvector with eigenvalue -0.5505
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Symmetric Case

Boundary Conditions

» Top Node
» up =1
oy, = 42

q
»u = Corft - Cork?
_ +A 1
> o=t (re - ) 2
» Bottom Node

> Up—1 = (q + )\)Un
> Uy = c+r;k +c_r_
1

— gy FL_ 1
Y = U ()
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ESymmetric Case

Combining Conditions

{u,,l = Uy » WLOG assume |ry| > |r—|

» Up = Up_o - ¢ 1)rn (r q+A )’ -

C+r£_2 +Cr" 2= c+r;1 +c_rt ’ T q(qq;\l)

{CMi_l +C.rml= c+r9r +c_rd (q—1)r" (r_ - q(q—l))

> Corl (e = ry) = cyr (e = ) s i

» Cory =y LT 1)‘ < ‘r, q(q—l)‘

> + (ri q&j—ﬁ)) f+ir_ ifl = b | _atx ‘ > r++r_‘ ‘ g+ ‘
U”%m a(q—1) 2 2(g-1)

> up=—(g-1) (ri - %) rf » Contradiction, therefore |ry| = |r_|
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_

ntisymmetric Case

Antisymmetric Eigenvector Structure

> First few levels are 0
> At some level, two siblings are opposite
> All their descendants are symmetric

Figure: Eigenvector with eigenvalue -1
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EAntisymmetric Case

Boundary Conditions

» Top Node
» u; =1, note!
A
> Uy = %
ug = C+ri_1 + C_rk1
Cp=4+—"12

ry—r—
» Bottom Node: same as last time
> Up—1 = (Q+ A)Un
T c+r;k +c_r-k
1

_ . FL
¥ = U D (n—r)

Ly is taken to be the value at the first nonzero node, instead of at the root
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EAntisymmetric Case

Combining Conditions

>

Up = Up—0
ot =t et

Crit+Crmt=crl4+cr®
> Corl” 2(f— ) =cpryt(re—ry)
> Cir = C+

o1, E 1

i C el £l Y] (A=)
> up = —(q - rett
> (g -1t = (g -1t
> e =]
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_

ufficiency

Sufficiency Proof: Decomposition

» Repeat at each level:

>

>
>
>

v

Swap any two sibling branches below the specified level

Average the original and swapped

Do this for all pairs of branches below the specified level

If the specified level is the first one, you have a symmetric eigenvector, which you
subtract out

Otherwise, swap any two sibling branches at the specified level

» Take the difference from the step before; now you have an antisymmetric eigenvector

» This process terminates, and results in a set of component eigenvectors for the
original

» Therefore every vector is a sum of symmetric and antisymmetric components
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— Conclusion

Numerical Observations: Eigenvalue Structure
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Figure: Asymmetric Eigenvalues for degree 3, new at n™ level and n levels respectively
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— Conclusion

Future Work
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Figure: Neumann Eigenvalues for degree 3; in
red outside the spectrum

Figure: Periodic Tree and Tree of Finite Cone
Type, respectively
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