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Introduction

Graph Laplacian

The Graph Laplacian is the discrete analog of the Laplacian:
I ∆g = A− D
I [∆gu]x =

∑
y∼x uy − ux = −deg(x)ux +

∑
y∼x uy

Figure: ∆g = A− D =

(
0 1 1 1
1 0 1 0
1 1 0 0
1 0 0 0

)
−
(

3 0
2

2
0 1

)
=

(−3 1 1 1
1 −2 1 0
1 1 −2 0
1 0 0 −1

)
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Introduction

Finite vs. Infinite Dimensions

I Spectrum of an operator ∆g : The set of λ for which ∆g − λ is not invertible.

I Finite-dimensional: Eigenvalues
I Infinite-dimensional:

I Point Spectrum (isolated eigenvalues of finite multiplicity)
I Continuous Spectrum (depends on the space under consideration)

I `p-space: The space of u for which (
∑

x |ux |p)
1
p converges.

I Spectrum depends on choice of p
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Homogeneous Trees

Infinite Homogeneous Trees

I deg(x) = q ∀x
I λ ∈ [−q − 2

√
q − 1,−q + 2

√
q − 1] (Lubotzky, Phillips, Sarnak)

I Main question: What, if any relationship is there between the spectrum of the
infinite tree and a truncated version?

Figure: Homogeneous Tree of degree 3
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Homogeneous Trees

Recurrence Relations: Sketch of Spectrum Proof

I Take a level-symmetric function,
obtain a recurrence

I (q − 1)uk+1 + uk−1 − quk = λuk

I uk+1 = q+λ
q−1uk −

1
q−1uk−1

I Roots are r± =
q+λ±

√
(q+λ)2−4(q−1)

2(q−1)

I `2 decay properties are equivalent to
|r+| = |r−|

I Therefore λ is within the specified
interval Figure: Neighborhoods of nodes in a

Homogeneous Tree
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Homogeneous Trees

Truncated Homogeneous Trees

Dirichlet: deg(x) = q ∀x

Figure: Homogeneous tree of degree 3 with 4
levels, Dirichlet truncation

Neumann: deg(x) = q or 1 ∀x

Figure: Homogeneous tree of degree 3 with 4
levels, Neumann truncation
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Main Result and Proof

Main Result

Theorem: The eigenvalues of the Graph Laplacian on a Dirichlet homogeneous tree of
degree q are within the `2 spectrum of the Graph Laplacian on the infinite
homogeneous tree of degree q

Figure: Dirichlet Eigenvalues for Homogeneous Trees of degree 3, n levels. The `2 spectrum is
shown as ∞.
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Main Result and Proof

Finite Recurrence: Sketch of Proof

I Assume a symmetric eigenvector

I Propagate recurrence

I r± =
q+λ±

√
(q+λ)2−4(q−1)

2(q−1)

I Solution must match boundary
conditions

I Obtain a constraint on r±

I Infer constraint on λ Figure: Neighborhoods of nodes in a
Homogeneous Tree
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Main Result and Proof

Symmetric Case

Symmetric Eigenvector Structure

I Top node is 1
I All subsequent levels are symmetric

Figure: Eigenvector with eigenvalue -0.5505
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Main Result and Proof

Symmetric Case

Boundary Conditions

I Top Node
I u1 = 1
I u2 = q+λ

q

I uk = C+r
k−1
+ + C−r

k−1
−

I C± = ±
(
r± − q+λ

q(q−1)

)
1

r+−r−

I Bottom Node
I un−1 = (q + λ)un
I un−k = c+r

−k
+ + c−r

−k
−

I c± = un
∓1
r±

1
(q−1)(r+−r−)
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Main Result and Proof

Symmetric Case

Combining Conditions

I

{
un−1 = un−1

un = un−0
I {

C+r
n−2
+ + C−r

n−2
− = c+r

−1
+ + c−r

−1
−

C+r
n−1
+ + C−r

n−1
− = c+r

0
+ + c−r

0
−

I C+r
n−2
+ (r− − r+) = c+r

−1
+ (r− − r+)

I C±r
n−1
± = c±

I ±
(
r± − q+λ

q(q−1)

)
1

r+−r−
rn−1
± =

un
∓1
r±

1
(q−1)(r+−r−)

I un = −(q − 1)
(
r± − q+λ

q(q−1)

)
rn±

I WLOG assume |r+| > |r−|

I

∣∣∣(q − 1)rn+

(
r+ − q+λ

q(q−1)

)∣∣∣ =∣∣∣(q − 1)rn−

(
r− − q+λ

q(q−1)

)∣∣∣
I

∣∣∣r+ − q+λ
q(q−1)

∣∣∣ < ∣∣∣r− − q+λ
q(q−1)

∣∣∣
I

∣∣∣ q+λ
q(q−1)

∣∣∣ > ∣∣∣ r++r−
2

∣∣∣ =
∣∣∣ q+λ

2(q−1)

∣∣∣
I Contradiction, therefore |r+| = |r−|
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Main Result and Proof

Antisymmetric Case

Antisymmetric Eigenvector Structure

I First few levels are 0
I At some level, two siblings are opposite
I All their descendants are symmetric

Figure: Eigenvector with eigenvalue -1



Spectral Analysis of the Graph Laplacian on Homogeneous Trees

Main Result and Proof

Antisymmetric Case

Boundary Conditions

I Top Node
I u1 = 1, note1

I u2 = q+λ
q−1

I uk = C+r
k−1
+ + C−r

k−1
−

I C± = ± r±
r+−r−

I Bottom Node: same as last time
I un−1 = (q + λ)un
I un−k = c+r

−k
+ + c−r

−k
−

I c± = un
∓1
r±

1
(q−1)(r+−r−)

1u1 is taken to be the value at the first nonzero node, instead of at the root
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Main Result and Proof

Antisymmetric Case

Combining Conditions

I

{
un−1 = un−1

un = un−0

I

{
C+r

n−2
+ + C−r

n−2
− = c+r

−1
+ + c−r

−1
−

C+r
n−1
+ + C−r

n−1
− = c+r

0
+ + c−r

0
−

I C+r
n−2
+ (r− − r+) = c+r

−1
+ (r− − r+)

I C±r
n−1
± = c±

I ±r± 1
r+−r−

rn−1
± = un

∓1
r±

1
(q−1)(r+−r−)

I un = −(q − 1)rn+1
±

I (q − 1)rn+1
+ = (q − 1)rn+1

−
I |r+| = |r−|
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Main Result and Proof

Sufficiency

Sufficiency Proof: Decomposition

I Repeat at each level:
I Swap any two sibling branches below the specified level
I Average the original and swapped
I Do this for all pairs of branches below the specified level
I If the specified level is the first one, you have a symmetric eigenvector, which you

subtract out
I Otherwise, swap any two sibling branches at the specified level
I Take the difference from the step before; now you have an antisymmetric eigenvector

I This process terminates, and results in a set of component eigenvectors for the
original

I Therefore every vector is a sum of symmetric and antisymmetric components
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Conclusion

Numerical Observations: Eigenvalue Structure

Figure: Symmetric Eigenvalues for degree 3, n levels

Figure: Asymmetric Eigenvalues for degree 3, new at nth level and n levels respectively
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Conclusion

Future Work

Figure: Neumann Eigenvalues for degree 3; in
red outside the spectrum

Figure: Periodic Tree and Tree of Finite Cone
Type, respectively
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