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Definition (Permutation Polynomial)

A polynomial f(X) € Fpn[X] is a permutation polynomial if it
induces a bijection of F,» under evaluation.
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X™if and only if (m,p" —1) =1

Example (All-ones polynomials)

1+ X+ X244+ XKifand only if k =1 (mod p(p" — 1))

Example (Dickson polynomials of the first kind)
T
. ivk—2j *
gk(X, a) _Z_;k——j( i )(—a)-’X ! for a € Fy,
= if and only if (k,(p")2 —1) =1
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Example (Linear binomials)

(X +b) = C, for a fixed b € Fn

Example (Linearized polynomials)

(L(X)) 22 GL(Fpn) where L(X) = 3272 ;X" such that the
unique zero of L(X) of 0

Example (Dickson polynomials of the first kind)

gk(X, a) is an abelian group if and only if a € {—1,0,1}
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@ Operation: composition and reduction modulo XP" — X
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(closure)
Permutation = fe(X) = X (IdentltY)
Representin u fg(X)[_ll = fg-1(X) (inverse)

Representing
Groups

The representation polynomials form a group under
composition modulo XP" — X which is isomorphic to G:

G={f(X):gecG}.
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Forany z € {1,2,...,p" — 1} and any primitive element
§ € Fpn, the polynomials

Permutation
Polynomials

Képearis EX+€ (1+E7X + (€72 X2+ + (872X 2)

Groups

are permutation polynomials over [Fn.

Example (Cyclic group of order p?)

The polynomials
14+ X+ XP Ly x2p-1) 4 ... 4 xPP-P

are permutation polynomials over [F ..
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S m Let Cpo = (g)
eroues m Fix a basis [3] = [Bo, £1] of (F,2,+) over ),
m Write the p-adic expansion of k as k = kg + K1p

m Write x € F» and x = Aofo + A1f1
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o(g") = o (g™1"1P) = kofBo + k1B

Permutation

Polynomials g ¥X=0

Representing
Groups

g“ o7 (Xofo + Alﬁl))

KotK1p | g)\OJF)\lP)

(Ho+>\o)+(f<1+>\1)P)

(ko+Xo)Bo+ (k1+M+1)B1, ko+Xo>p

X+ (KOBO + 5161)7 )\0 < p— Ko
x + (kofo + k151) + 1, Ao > p— Ko

(o2
{(fio+>\o)ﬁo+(fi1+>\1)51, Ko+ X < p
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Example (The “Additive Representation” of C,2)

FLAL(X) = X + koflo + sy

p—1 p—1 p?—2

— B Z i ((MoBo + )\1/31)_1X)£
0

Ao=p—kKo A1=0 /=
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Definition (Equivalence)

The polynomial representations f, f’ generated by

Equivatence of IR 0’1 G < Fpn, respectively, are equivalent if there exists a

e group automorphism a: (Fpn, +) — (Fpn, +) such that for
all g € G,

fe(X) = (a7t ol o a)(X).
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Theorem

The “additive representations” of Cpn in any two bases [[3]
and [v] of (Fpn,+) over F, are equivalent. Moreover,
(X)) = L) o £7(X) 0 LX),

Equivalence of
Groups of

Polynomials where L(X) is a polynomial of the form
n—1 )

L(X) =) X"
i=0

that represents the change of basis of (Fpn,+) from [7] to [A].
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Let [Bo, B1] and [y0,71] be two bases of (F 2, +) over .
Then there exist unique r € ¥, s € Fp, and t € I, such that

fghom](x) _ (Nt(Ms(rX))[_l] o fglﬁo,ﬂll(x) o Ne(Ms(rX)),
where

1

An MX:—(52XP+ P _ P_SP+1X>
el -(%) = grp—popp \SAXT (o = foby = 56T
GL(F,2)
and
1 p p—1 p—1
o ~—PF1
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The Unexpected Result

Theorem (Generators of GL(IF2))

Let Bo, 1 € Fp2 be linearly independent over F,, let p € F*,
be primitive, and let ¢, € F, with T nonzero. Then the
polynomials pX,

1
Mo(X) = g (WSEXP + (301 = 5of — wBE™)X)
and
1 _ _
Nn(X) = oo (7= DX+ (867 =78 )X)
0 1

generate a group of permutation polynomials isomorphic to the
general linear group GL(IF2).
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