Permutation Polynomials and $GL(\mathbb{F}_{p^2})$

Introduction

Permutation Polynomials Representing Groups

Equivalence of Groups of Polynomials

An Unexpected Result about $GL(\mathbb{F}_{p^2})$ Permutation Polynomials and Polynomial Generators of a General Linear Group

Chris Castillo

Loyola Blakefield

MD-DC-VA Section of the MAA Fall 2016 Meeting Johns Hopkins University November 5, 2016

Finite Fields and Permutation Polynomials

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

 $\begin{array}{c} \text{Permutation} \\ \text{Polynomials} \\ \text{and} \ \textit{GL}(\mathbb{F}_{p^2}) \end{array}$

Introduction

- Permutation Polynomials Representing Groups
- Equivalence o Groups of Polynomials

An Unexpected Result about $GL(\mathbb{F}_{n^2})$ Let p be prime and consider the finite field \mathbb{F}_{p^n}

Finite Fields and Permutation Polynomials

Permutation Polynomials and $GL(\mathbb{F}_{p^2})$

Introduction

Permutation Polynomials Representing Groups

Equivalence of Groups of Polynomials

An Unexpected Result about $GL(\mathbb{F}_{n^2})$ Let p be prime and consider the finite field \mathbb{F}_{p^n}

Theorem (Lagrange Interpolation)

Any function $\varphi \colon \mathbb{F}_{p^n} \to \mathbb{F}_{p^n}$ may be represented as a polynomial $f(X) \in \mathbb{F}_{p^n}[X]$ according to the formula:

$$f(X) = \sum_{x \in \mathbb{F}_{p^n}} \left(1 - (X - x)^{p^n - 1}\right) \varphi(x).$$

Finite Fields and Permutation Polynomials

Permutation Polynomials and $GL(\mathbb{F}_{p^2})$

Introduction

Permutation Polynomials Representing Groups

Equivalence of Groups of Polynomials

An Unexpected Result about $GL(\mathbb{F}_{n^2})$ Let p be prime and consider the finite field \mathbb{F}_{p^n}

Theorem (Lagrange Interpolation)

Any function $\varphi \colon \mathbb{F}_{p^n} \to \mathbb{F}_{p^n}$ may be represented as a polynomial $f(X) \in \mathbb{F}_{p^n}[X]$ according to the formula:

$$f(X) = \sum_{x \in \mathbb{F}_{p^n}} \left(1 - (X - x)^{p^n - 1}\right) \varphi(x).$$

Definition (Permutation Polynomial)

A polynomial $f(X) \in \mathbb{F}_{p^n}[X]$ is a *permutation polynomial* if it induces a bijection of \mathbb{F}_{p^n} under evaluation.

Permutation Polynomials and $GL(\mathbb{F}_{p^2})$

Example (Linear polynomials)

aX + b for any $a \in \mathbb{F}_{p^n}^*$ and any $b \in \mathbb{F}_{p^n}$

Introduction

- Permutation Polynomials Representing Groups
- Equivalence of Groups of Polynomials

An Unexpected Result about $GL(\mathbb{F}_{n^2})$

Permutation Polynomials and $GL(\mathbb{F}_{p^2})$

Example (Linear polynomials)

aX+b for any $a\in \mathbb{F}_{p^n}^*$ and any $b\in \mathbb{F}_{p^n}$

Introduction

Permutation Polynomials Representing Groups

Equivalence of Groups of Polynomials

An Unexpected Result about $GL(\mathbb{F}_{n^2})$

Example (Monomials)

 X^m if and only if $(m, p^n - 1) = 1$

Permutation Polynomials and $GL(\mathbb{F}_{p^2})$

Example (Linear polynomials)

$$aX+b$$
 for any $a\in \mathbb{F}_{p^n}^*$ and any $b\in \mathbb{F}_{p^n}$

Introduction

Permutation Polynomials Representing Groups

Equivalence o Groups of Polynomials

An Unexpected Result about $GL(\mathbb{F}_{p^2})$

Example (Monomials)

 X^m if and only if $(m, p^n - 1) = 1$

Example (All-ones polynomials)

 $1 + X + X^2 + \cdots + X^k$ if and only if $k \equiv 1 \pmod{p(p^n - 1)}$

Permutation Polynomials and $GL(\mathbb{F}_{p^2})$

Introduction

Permutation Polynomials Representing Groups

Equivalence o Groups of Polynomials

An Unexpected Result about $GL(\mathbb{F}_{p^2})$

Example (Linear polynomials)

$$aX+b$$
 for any $a\in \mathbb{F}_{p^n}^*$ and any $b\in \mathbb{F}_{p^n}$

Example (Monomials)

 X^m if and only if $(m, p^n - 1) = 1$

Example (All-ones polynomials)

 $1 + X + X^2 + \cdots + X^k$ if and only if $k \equiv 1 \pmod{p(p^n - 1)}$

Example (Dickson polynomials of the first kind)

$$g_k(X,a) := \sum_{j=0}^{\lfloor \frac{k}{2}
floor} rac{k}{k-j} {k-j \choose j} (-a)^j X^{k-2j} ext{ for } a \in \mathbb{F}_q^*$$

if and only if $(k, (p^n)^2 - 1) = 1$

Permutation Polynomials and $GL(\mathbb{F}_{p^2})$

Example (Linear monomials)

$$\langle aX
angle \cong C_{p^n-1}$$
 for a fixed primitive $a \in \mathbb{F}_{p^n}^*$

Introduction

Permutation Polynomials Representing Groups

Equivalence of Groups of Polynomials

An Unexpected Result about $GL(\mathbb{F}_{n^2})$

Permutation Polynomials and $GL(\mathbb{F}_{p^2})$

Example (Linear monomials)

$$\langle aX
angle \cong C_{p^n-1}$$
 for a fixed primitive $a \in \mathbb{F}_{p^n}^*$

Introduction

Permutation Polynomials Representing Groups

Equivalence of Groups of Polynomials

An Unexpected Result about $GL(\mathbb{F}_{n^2})$

Example (Linear binomials)

 $\langle X+b
angle\cong C_p$ for a fixed $b\in \mathbb{F}_{p^n}^*$

Permutation Polynomials and $GL(\mathbb{F}_{p^2})$

Example (Linear monomials)

$$\langle aX
angle \cong C_{p^n-1}$$
 for a fixed primitive $a \in \mathbb{F}_{p^n}^*$

Introduction

Permutation Polynomials Representing Groups

Equivalence o Groups of Polynomials

An Unexpected Result about $GL(\mathbb{F}_{n^2})$

Example (Linear binomials)

 $\langle X+b
angle\cong \mathcal{C}_p$ for a fixed $b\in\mathbb{F}_{p^n}^*$

Example (Linearized polynomials)

 $\langle L(X) \rangle \cong GL(\mathbb{F}_{p^n})$ where $L(X) = \sum_{i=0}^{n-1} \ell_i X^{p^i}$ such that the unique zero of L(X) of 0

Permutation Polynomials and $GL(\mathbb{F}_{p^2})$

Example (Linear monomials)

$$\langle aX
angle \cong C_{p^n-1}$$
 for a fixed primitive $a \in \mathbb{F}_{p^n}^*$

Introduction

Permutation Polynomials Representing Groups

Equivalence o Groups of Polynomials

An Unexpected Result about $GL(\mathbb{F}_{n^2})$

Example (Linear binomials)

$$\langle X+b
angle\cong \mathcal{C}_p$$
 for a fixed $b\in\mathbb{F}_{p^n}^*$

Example (Linearized polynomials)

 $\langle L(X) \rangle \cong GL(\mathbb{F}_{p^n})$ where $L(X) = \sum_{i=0}^{n-1} \ell_i X^{p^i}$ such that the unique zero of L(X) of 0

Example (Dickson polynomials of the first kind)

 $g_k(X,a)$ is an abelian group if and only if $a \in \{-1,0,1\}$

▲ロト ▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

 $\begin{array}{c} \text{Permutation} \\ \text{Polynomials} \\ \text{and} \ \textit{GL}(\mathbb{F}_{p^2}) \end{array}$

Introduction

Permutation Polynomials Representing Groups

Equivalence of Groups of Polynomials

An Unexpected Result about $GL(\mathbb{F}_{n^2})$ Let G be a group of order at most p^n

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Permutation Polynomials and $GL(\mathbb{F}_{p^2})$

Introduction

Permutation Polynomials Representing Groups

Equivalence of Groups of Polynomials

An Unexpected Result about $GL(\mathbb{F}_{n^2})$ Let G be a group of order at most p^n

1 Injection: $\sigma : G \hookrightarrow \mathbb{F}_{p^n}$

Permutation Polynomials and $GL(\mathbb{F}_{p^2})$

Introduction

Permutation Polynomials Representing Groups

Equivalence of Groups of Polynomials

An Unexpected Result about $GL(\mathbb{F}_{n^2})$ Let G be a group of order at most p^n

1 Injection: $\sigma \colon G \hookrightarrow \mathbb{F}_{p^n}$

2 Action of G on \mathbb{F}_{p^n} :

$$g * x := \begin{cases} \sigma \left(g \cdot \sigma^{-1}(x)\right), & x \in \sigma(G) \\ x, & x \notin \sigma(G) \end{cases}$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Permutation Polynomials and $GL(\mathbb{F}_{p^2})$

Introduction

Permutation Polynomials Representing Groups

Equivalence of Groups of Polynomials

An Unexpected Result about $GL(\mathbb{F}_{n^2})$ Let G be a group of order at most p^n

1 Injection: $\sigma : G \hookrightarrow \mathbb{F}_{p^n}$

2 Action of G on \mathbb{F}_{p^n} :

$$g * x := \begin{cases} \sigma \left(g \cdot \sigma^{-1}(x)\right), & x \in \sigma(G) \\ x, & x \notin \sigma(G) \end{cases}$$

3 Interpolation:

$$f_g(X) = \sum_{x \in \mathbb{F}_{p^n}} \left(1 - (X - x)^{q-1}\right) (g * x)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Permutation Polynomials and $GL(\mathbb{F}_{p^2})$

Introduction

Permutation Polynomials Representing Groups

Equivalence of Groups of Polynomials

An Unexpected Result about $GL(\mathbb{F}_{p^2})$ Let G be a group of order at most p^n

1 Injection: $\sigma : G \hookrightarrow \mathbb{F}_{p^n}$

2 Action of G on \mathbb{F}_{p^n} :

$$g * x := \begin{cases} \sigma \left(g \cdot \sigma^{-1}(x) \right), & x \in \sigma(G) \\ x, & x \notin \sigma(G) \end{cases}$$

3 Interpolation:

$$f_g(X) = \sum_{x \in \mathbb{F}_{p^n}} \left(1 - (X - x)^{q-1}\right) \left(g * x\right)$$

4 Operation: composition and reduction modulo $X^{p^n} - X$

Permutation Polynomials and $GL(\mathbb{F}_{p^2})$

• $f_g(f_h(X)) = f_{gh}(X)$

Introduction

Permutation Polynomials Representing Groups

Equivalence of Groups of Polynomials

An Unexpected Result about $GL(\mathbb{F}_{n^2})$ (closure)

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Permutation Polynomials and $GL(\mathbb{F}_{p^2})$

Introduction

Permutation Polynomials Representing Groups

Equivalence of Groups of Polynomials

An Unexpected Result about $GL(\mathbb{F}_{n^2})$

•
$$f_g(f_h(X)) = f_{gh}(X)$$

• $f_e(X) = X$

(closure) (identity)

Permutation Polynomials and $GL(\mathbb{F}_{p^2})$

Introduction

Permutation Polynomials Representing Groups

Equivalence of Groups of Polynomials

An Unexpected Result about $GL(\mathbb{F}_{n^2})$

- $f_g(f_h(X)) = f_{gh}(X)$ • $f_e(X) = X$
- $f_g(X)^{[-1]} = f_{g^{-1}}(X)$

(closure) (identity) (inverse)

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Permutation Polynomials and $GL(\mathbb{F}_{p^2})$

Introduction

Permutation Polynomials Representing Groups

Equivalence of Groups of Polynomials

An Unexpected Result about *GL*(F_n2)

$$f_g(f_h(X)) = f_{gh}(X)$$
 (closure)

 $f_e(X) = X$
 (identity)

 $f_g(X)^{[-1]} = f_{g^{-1}}(X)$
 (inverse)

Theorem

The representation polynomials form a group under composition modulo $X^{p^n} - X$ which is isomorphic to G:

$$G\cong \{f_g(X):g\in G\}$$
 .

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Examples

Permutation Polynomials and $GL(\mathbb{F}_{p^2})$

Introduction

Permutation Polynomials Representing Groups

Equivalence c Groups of Polynomials

An Unexpected Result about $GL(\mathbb{F}_{2})$

Example (Cyclic group of order p^n)

For any $z \in \{1, 2, \dots, p^n - 1\}$ and any primitive element $\xi \in \mathbb{F}_{p^n}$, the polynomials

$$\xi X + \xi^{z} \Big(1 + \xi^{1-z} X + (\xi^{1-z} X)^{2} + \dots + (\xi^{1-z} X)^{p^{n-2}} \Big)$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

are permutation polynomials over \mathbb{F}_{p^n} .

Examples

Permutation Polynomials and $GL(\mathbb{F}_{p^2})$

Introduction

Permutation Polynomials Representing Groups

Equivalence of Groups of Polynomials

An Unexpected Result about $GL(\mathbb{F}_{p^2})$

Example (Cyclic group of order p^n)

For any $z \in \{1, 2, \dots, p^n - 1\}$ and any primitive element $\xi \in \mathbb{F}_{p^n}$, the polynomials

$$\xi X + \xi^{z} \Big(1 + \xi^{1-z} X + (\xi^{1-z} X)^{2} + \dots + (\xi^{1-z} X)^{p^{n-2}} \Big)$$

are permutation polynomials over \mathbb{F}_{p^n} .

Example (Cyclic group of order p^2)

The polynomials

$$1 \pm X + X^{p-1} + X^{2(p-1)} + \dots + X^{p^2-p}$$

are permutation polynomials over \mathbb{F}_{p^2} .

▲□▶▲圖▶▲圖▶▲圖▶ = ● のへの

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Permutation Polynomials and $GL(\mathbb{F}_{p^2})$

Introduction

Permutation Polynomials Representing Groups

Equivalence of Groups of Polynomials

An Unexpected Result about $GL(\mathbb{F}_{n^2})$

• Let
$$C_{p^2} = \langle g \rangle$$

Permutation Polynomials and $GL(\mathbb{F}_{p^2})$

Introduction

Permutation Polynomials Representing Groups

Equivalence of Groups of Polynomials

An Unexpected Result about $GL(\mathbb{F}_{n^2})$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Permutation Polynomials and $GL(\mathbb{F}_{p^2})$

Introduction

Permutation Polynomials Representing Groups

Equivalence o Groups of Polynomials

An Unexpected Result about $GL(\mathbb{F}_{n^2})$

- Let $C_{p^2} = \langle g \rangle$
- Fix a basis $[\beta] = [\beta_0, \beta_1]$ of $(\mathbb{F}_{p^2}, +)$ over \mathbb{F}_p
- Write the *p*-adic expansion of *k* as $k = \kappa_0 + \kappa_1 p$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Permutation Polynomials and $GL(\mathbb{F}_{p^2})$

Introduction

Permutation Polynomials Representing Groups

Equivalence of Groups of Polynomials

An Unexpected Result about $GL(\mathbb{F}_{n^2})$

- Let $C_{p^2} = \langle g \rangle$
- Fix a basis $[\beta] = [\beta_0, \beta_1]$ of $(\mathbb{F}_{p^2}, +)$ over \mathbb{F}_p
- Write the *p*-adic expansion of *k* as $k = \kappa_0 + \kappa_1 p$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

• Write $x \in \mathbb{F}_{p^2}$ and $x = \lambda_0 \beta_0 + \lambda_1 \beta_1$

Permutation Polynomials and $GL(\mathbb{F}_{p^2})$

Injection:

$$\sigma(g^{k}) = \sigma\left(g^{\kappa_{0}+\kappa_{1}p}\right) = \kappa_{0}\beta_{0} + \kappa_{1}\beta_{1}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Introduction

Permutation Polynomials Representing Groups

Equivalence of Groups of Polynomials

An Unexpected Result abou $GL(\mathbb{F}_{n^2})$

Permutation Polynomials and $GL(\mathbb{F}_{p^2})$

Injection:

$$\sigma(g^{k}) = \sigma\left(g^{\kappa_{0}+\kappa_{1}p}\right) = \kappa_{0}\beta_{0} + \kappa_{1}\beta_{1}$$

Action:

Permutation Polynomials Representing Groups

Equivalence Groups of Polynomials

An Unexpected Result about $GL(\mathbb{F}_{p^2})$

$$g^{k} * x = \sigma \left(g^{k} \cdot \sigma^{-1} \left(\lambda_{0} \beta_{0} + \lambda_{1} \beta_{1} \right) \right)$$

$$= \sigma \left(g^{\kappa_{0} + \kappa_{1} p} \cdot g^{\lambda_{0} + \lambda_{1} p} \right)$$

$$= \sigma \left(g^{(\kappa_{0} + \lambda_{0}) + (\kappa_{1} + \lambda_{1}) \beta_{1}}, \qquad \kappa_{0} + \lambda_{0}
$$= \begin{cases} (\kappa_{0} + \lambda_{0}) \beta_{0} + (\kappa_{1} + \lambda_{1} + 1) \beta_{1}, \qquad \kappa_{0} + \lambda_{0} \geq p \end{cases}$$

$$= \begin{cases} x + (\kappa_{0} \beta_{0} + \kappa_{1} \beta_{1}), \qquad \lambda_{0}$$$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Permutation Polynomials and $GL(\mathbb{F}_{p^2})$

Introduction

Permutation Polynomials Representing Groups

Equivalence of Groups of Polynomials

An Unexpected Result about $GL(\mathbb{F}_{n^2})$ f_{g}^{I}

- C_{p²} = ⟨g⟩
 Let [β] = [β₀, β₁] be a basis of (𝔽_{p²}, +) over 𝔽_p
- Write $k = \kappa_0 + \kappa_1 p$

Example (The "Additive Representation" of C_{p^2})

$$\begin{split} & {}^{\beta_0,\beta_1]}_{\kappa_0+\kappa_1\rho}(X) = X + \kappa_0\beta_0 + \kappa_1\beta_1 \\ & -\beta_1 \sum_{\lambda_0=\rho-\kappa_0}^{p-1} \sum_{\lambda_1=0}^{p-1} \sum_{\ell=0}^{p^2-2} \left((\lambda_0\beta_0 + \lambda_1\beta_1)^{-1} X \right)^\ell \end{split}$$

Equivalence of Representations

Permutation Polynomials and $GL(\mathbb{F}_{p^2})$

Introduction

Permutation Polynomials Representing Groups

Equivalence of Groups of Polynomials

An Unexpected Result about $GL(\mathbb{F}_{n^2})$

Definition (Equivalence)

The polynomial representations f, f' generated by $\sigma, \sigma' \colon G \hookrightarrow \mathbb{F}_{p^n}$, respectively, are *equivalent* if there exists a group automorphism $\alpha \colon (\mathbb{F}_{p^n}, +) \to (\mathbb{F}_{p^n}, +)$ such that for all $g \in G$,

$$f_g(X) = (\alpha^{-1} \circ f'_g \circ \alpha)(X).$$

Equivalence of Polynomials Representing C_{p^2}

Permutation Polynomials and $GL(\mathbb{F}_{p^2})$

Theorem

Permutation Polynomials Representing

Equivalence of Groups of Polynomials

An Unexpected Result about $GL(\mathbb{F}_{p^2})$ The "additive representations" of C_{p^2} in any two bases [β] and [γ] of (\mathbb{F}_{p^2} , +) over \mathbb{F}_p are equivalent.

Equivalence of Polynomials Representing C_{p^2}

Permutation Polynomials and $GL(\mathbb{F}_{p^2})$

Theorem

Permutation Polynomials Representing Groups

Equivalence of Groups of Polynomials

An Unexpected Result about $GL(\mathbb{F}_{p^2})$ The "additive representations" of C_{p^2} in any two bases [β] and [γ] of (\mathbb{F}_{p^2} , +) over \mathbb{F}_p are equivalent. Moreover,

$$f_g^{[\gamma]}(X) = L(X)^{[-1]} \circ f_g^{[\beta]}(X) \circ L(X),$$

where L(X) is a polynomial of the form

$$L(X) = \ell_1 X^p + \ell_0 X$$

that represents the change of basis of $(\mathbb{F}_{p^2}, +)$ from $[\gamma]$ to $[\beta]$.

Equivalence of Polynomials Representing C_{p^n}

Permutation Polynomials and $GL(\mathbb{F}_{p^2})$

Theorem

Introduction

Permutation Polynomials Representing Groups

Equivalence of Groups of Polynomials

An Unexpected Result about $GL(\mathbb{F}_{n^2})$

The "additive representations" of
$$C_{p^n}$$
 in any two bases [β] and [γ] of (\mathbb{F}_{p^n} , +) over \mathbb{F}_p are equivalent. Moreover,

$$f_g^{[\gamma]}(X) = L(X)^{[-1]} \circ f_g^{[\beta]}(X) \circ L(X),$$

where L(X) is a polynomial of the form

$$L(X) = \sum_{i=0}^{n-1} \ell_i X^{p^i}$$

that represents the change of basis of $(\mathbb{F}_{p^n}, +)$ from $[\gamma]$ to $[\beta]$.

Equivalence of Polynomials Representing C_{p^2}

Permutation Polynomials and $GL(\mathbb{F}_{p^2})$

Introduction

Permutation Polynomials Representing Groups

Equivalence of Groups of Polynomials

An Unexpected Result about $GL(\mathbb{F}_{n^2})$

Theorem

Let $[\beta_0, \beta_1]$ and $[\gamma_0, \gamma_1]$ be two bases of $(\mathbb{F}_{p^2}, +)$ over \mathbb{F}_p . Then there exist unique $r \in \mathbb{F}_{p^2}^*$, $s \in \mathbb{F}_p$, and $t \in \mathbb{F}_p^*$ such that

$$f_g^{[\gamma_0,\gamma_1]}(X) = \left(N_t(M_s(rX))^{[-1]} \circ f_g^{[\beta_0,\beta_1]}(X) \circ N_t(M_s(rX))\right)$$

where

$$M_{s}(X) = \frac{1}{\beta_{0}^{p}\beta_{1} - \beta_{0}\beta_{1}^{p}} \left(s\beta_{1}^{2}X^{p} + (\beta_{0}^{p}\beta_{1} - \beta_{0}\beta_{1}^{p} - s\beta_{1}^{p+1})X \right)$$

and

$$N_t(X) = \frac{1}{\beta_0^{p-1} - \beta_1^{p-1}} \left((t-1)X^p + (\beta_0^{p-1} - t\beta_1^{p-1})X \right).$$

The Unexpected Result

Permutation Polynomials and $GL(\mathbb{F}_{p^2})$

Introduction

Permutation Polynomials Representing Groups

Equivalence of Groups of Polynomials

An Unexpected Result about $GL(\mathbb{F}_{n^2})$

Theorem (Generators of $GL(\mathbb{F}_{p^2})$)

Let $\beta_0, \beta_1 \in \mathbb{F}_{p^2}$ be linearly independent over \mathbb{F}_p , let $\rho \in \mathbb{F}_{p^2}^*$ be primitive, and let $\psi, \tau \in \mathbb{F}_p$ with τ nonzero. Then the polynomials ρX ,

$$M_{\psi}(X) = \frac{1}{\beta_0^p \beta_1 - \beta_0 \beta_1^p} \left(\psi \beta_1^2 X^p + (\beta_0^p \beta_1 - \beta_0 \beta_1^p - \psi \beta_1^{p+1}) X \right)$$

and
$$N_{\tau}(X) = \frac{1}{\beta_0^{p-1} - \beta_1^{p-1}} \left((\tau - 1) X^p + (\beta_0^{p-1} - \tau \beta_1^{p-1}) X \right)$$

generate a group of permutation polynomials isomorphic to the general linear group $GL(\mathbb{F}_{p^2})$.

Permutation Polynomials and $GL(\mathbb{F}_{p^2})$

Introduction

Permutation Polynomials Representing Groups

Equivalence of Groups of Polynomials

An Unexpected Result about $GL(\mathbb{F}_{n^2})$

Thank you for attending!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Permutation Polynomials and $GL(\mathbb{F}_{p^2})$

Introduction

Permutation Polynomials Representing Groups

Equivalence of Groups of Polynomials

An Unexpected Result about $GL(\mathbb{F}_{n^2})$

Thank you for attending!

Are there any questions?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?