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What to expect

1835: apparent beginnings

1844: octonions

1847: block designs

1891: map coloring and topology

1892: finite geometries

1933: difference sets

1947: codes

Before 1835 . . . what?
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A Beautiful Design
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The birth of combinatorial designs

1835: Julius Plücker and cubics

A general plane cubic curve has nine points of inflection.

The points lie on four sets of three lines, with three points per line.

Exactly one of these twelve lines must pass through any two inflection
points.

1839: Julius Plücker and the nine-point affine plane

Designate the points as 1, 2, 3, 4, 5, 6, 7, 8, and 9. Then the twelve lines are
as follows:

{1, 2, 3}, {4, 5, 6}, {7, 8, 9}
{1, 4, 7}, {2, 5, 8}, {3, 6, 9}
{1, 5, 9}, {2, 6, 7}, {3, 4, 8}
{1, 6, 8}, {2, 4, 9}, {3, 5, 7}

This is the first block design to appear in print.
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The birth of combinatorial designs

1835: Julius Plücker and cubics

A general plane cubic curve has nine points of inflection.

The points lie on four sets of three lines, with three points per line.

Exactly one of these twelve lines must pass through any two inflection
points.

1839: Julius Plücker and the nine-point affine plane

Designate the points as 1, 2, 3, 4, 5, 6, 7, 8, and 9. Then the twelve lines are
as follows:

{1, 2, 3}, {4, 5, 6}, {7, 8, 9}
{1, 4, 7}, {2, 5, 8}, {3, 6, 9}
{1, 5, 9}, {2, 6, 7}, {3, 4, 8}
{1, 6, 8}, {2, 4, 9}, {3, 5, 7}

This is the first block design to appear in print. Or is it?
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Euler and Hamilton and the quaternions

1748: Euler’s four-square identity

(a21 + a22 + a23 + a24)(b21 + b22 + b23 + b24) =

= (a1b1 − a2b2 − a3b3 − a4b4)2 + (a1b2 + a2b1 + a3b4 − a4b3)2

+(a1b3 − a2b4 + a3b1 + a4b2)2 + (a1b4 + a2b3 − a3b2 + a4b1)2

1843: Hamilton’s four-dimensional normed algebra – the quaternions

i2 = j2 = k2 = ijk = −1

What happened next

October 18, 1843: Hamilton writes John Graves with the news.
November 1843: John writes back, “I’ll see your four squares and raise you
four more.”
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1844: John Graves’ news

The eight-squares identity(
a0

2 + a1
2 + a2

2 + a3
2 + a4

2 + a5
2 + a6

2 + a7
2
)

×(b0
2 + b1

2 + b2
2 + b3

2 + b4
2 + b5

2 + b6
2 + b7

2)
= (a0b0 − a1b1 − a2b2 − a3b3 − a4b4 − a5b5 − a6b6 − a7b7)2

+(a0b1 + a1b0 + a2b3 − a3b2 + a4b5 − a5b4 − a6b7 + a7b6)2

+(a0b2 − a1b3 + a2b0 + a3b1 + a4b6 + a5b7 − a6b4 − a7b5)2

+(a0b3 + a1b2 − a2b1 + a3b0 + a4b7 − a5b6 + a6b5 − a7b4)2

+(a0b4 − a1b5 − a2b6 − a3b7 + a4b0 + a5b1 + a6b2 + a7b3)2

+(a0b5 + a1b4 − a2b7 + a3b6 − a4b1 + a5b0 − a6b3 + a7b2)2

+(a0b6 + a1b7 + a2b4 − a3b5 − a4b2 + a5b3 + a6b0 − a7b1)2

+(a0b7 − a1b6 + a2b5 + a3b4 − a4b3 − a5b2 + a6b1 + a7b0)2.

The octaves

Graves’ letter describes a way to multiply octaves, or eight-dimensional
real vectors. We now call them octonions.
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Meanwhile, in another part of the forest:

1844-46: Wesley Woolhouse

“How many triads can be made out of n symbols, so that no pair of
symbols shall be comprised more than once amongst the triads?”

1847: Thomas Kirkman

“On a problem of combinations”: monumental paper that begins serious
study of combinatorial designs, gives birth to its central objects, and
exhibits the (7, 3, 1) block design.

Block Designs

A balanced incomplete block design with parameters (v , k , λ) is a
collection of k-subsets of a v -element set V such that every pair of
distinct elements of V occurs together in exactly λ of the k-subsets.

Brown History of (7, 3, 1)



1847: Kirkman describes the (7, 3, 1) block design

1 2 3 A
1 4 5 B
1 6 7 C
2 4 6 D
2 5 7 E
3 4 7 F
3 5 6 G

The objects V = {1, 2, 3, 4, 5, 6, 7} are called varieties, treatments, or
points

The 3-element subsets {A,B,C ,D,E ,F ,G} of V are called blocks,
plots, or lines.
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The octonions and the (7, 3, 1) block design

1845: Graves’ and Cayley’s multiplication of octonion units

i1
2 = i2

2 = i3
2 = i4

2 = i5
2 = i6

2 = i7
2 = −1

i1 = i2i3 = i4i5 = i7i6 = −i3i2 = −i5i4 = −i6i7
i2 = i3i1 = i4i6 = i5i7 = −i1i3 = −i6i4 = −i7i5
i3 = i1i2 = i4i7 = i6i5 = −i2i1 = −i7i4 = −i5i6
i4 = i5i1 = i6i2 = i7i3 = −i1i5 = −i2i6 = −i3i7
i5 = i1i4 = i7i2 = i3i6 = −i4i1 = −i2i7 = −i6i3
i6 = i2i4 = i1i7 = i5i3 = −i4i2 = −i7i1 = −i3i5
i7 = i6i1 = i2i5 = i3i4 = −i1i6 = −i5i2 = −i4i3

1848: Kirkman and the octonions

Shows that the (7, 3, 1) design plays a central role in Graves and Cayley’s
multiplication of octonion units.
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Incidence matrices and (7, 3, 1)

The incidence matrix M of a design

Given a (v , k, λ) design with b blocks.

M = [mij ] is a b × v matrix with mij = 1 or 0 if the ith block does or
does not contain the jth variety, respectively.

The incidence matrix of (7, 3, 1)

1 2 3 4 5 6 7

A 1 1 1 0 0 0 0
B 1 0 0 1 1 0 0
C 1 0 0 0 0 1 1
D 0 1 0 1 0 1 0
E 0 1 0 0 1 0 1
F 0 0 1 1 0 0 1
G 0 0 1 0 1 1 0
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The block-point graph BP(D)of a (v , k , λ) design D

Blocks and points are vertices, and there is an edge between a point p and
a block X if and only if p ∈ X . The block-point graph of a design with v
varieties and b k-element blocks contains b + v vertices and bk edges.

The block-point graph of (7, 3, 1) is called the Heawood graph:
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1891: P. J. Heawood and map-coloring

Proper coloring of a map M: an assignment of colors to the regions
of a map so that adjacent regions have distinct colors.

Chromatic number of M: the smallest number of colors needed in a
proper coloring of M

Heawood’s Conjecture (1891, proved in 1968): For g > 0, the
chromatic number of every map drawn on the surface of a g -holed
torus is at most b(7 +

√
1 + 48g)/2c, and this bound is sharp.

This number is 7 for the 1-holed torus.
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1891: The Heawood Graph on the Torus
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Seven mutually adjacent hexagons on a torus:
a toroidal imbedding of the block-point graph of (7, 3, 1)
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Finite Geometries

1892: Gino Fano

Publishes major work on the foundations of projective geometry.

Pioneers ideas about finite geometry that Kirkman anticipated in the
1850s before Fano was born.

1

42

7

6

53

The Fano plane: vertices and sides are the points and blocks of (7, 3, 1)
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1933: Paley constructs difference sets

A (v , k, λ) difference set is a k-element subset D of V = Z mod v
such that every nonzero element of V can be expressed as a
difference a− b of elements a, b ∈ D in exactly λ ways.

In 1933, R. E. A. C. Paley proves that if p = 4n + 3 is a prime, then
the nonzero squares mod p form a (4n + 3, 2n + 1, n) difference set.

These are the so-called Paley-Hadamard difference sets.
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The (7, 3, 1) difference set – and a bonus

The difference set

Let D = {1, 2, 4} be the nonzero squares mod p = 7. Look at the
differences of elements of D mod 7 :

2− 1 ≡ 1 1− 4 ≡ 4
4− 2 ≡ 2 2− 4 ≡ 5
4− 1 ≡ 3 1− 2 ≡ 6

The numbers {1, 2, 3, 4, 5, 6} are each expressible as a difference of
elements of D in exactly 1 way. Hence, D = {1, 2, 4} is a (7, 3, 1)
Paley-Hadamard difference set.

The bonus

D a (v , k , λ) difference set: the translates {D + k mod v : 1 ≤ k ≤ v} of
D mod v form a (v , k , λ) block design.Thus the sets
{1, 2, 4}, {2, 3, 5}, {3, 4, 6}, {4, 5, 7}, {5, 6, 1}, {6, 7, 2}, {7, 1, 3} form a
(7, 3, 1) block design.
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1947: Hamming constructs error-correcting codes

The Hamming Code According To Shannon

“Let a block of seven [binary] symbols be X1,X2, . . . ,X7. Of
these X3,X5,X6 and X7 are message symbols and chosen
arbitrarily by the source. The other three are redundant and
calculated as follows:

X4 is chosen to make α = X4 + X5 + X6 + X7 even

X2 is chosen to make β = X2 + X3 + X6 + X7 even

X1 is chosen to make γ = X1 + X3 + X5 + X7 even

When a block of seven is received, α, β and γ are calculated and
if even called zero, if odd called one. The binary number αβγ
then gives the subscript of the Xi that is incorrect (if 0 there was
no error).”
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The (7, 4) Hamming Code

1 2 3 4 5 6 7
0 0 0 0 0 0 0
1 1 0 1 0 0 1
0 1 0 1 0 1 0
1 0 0 0 0 1 1
1 0 0 1 1 0 0
0 1 0 0 1 0 1
1 1 0 0 1 1 0
0 0 0 1 1 1 1
1 1 1 0 0 0 0
0 0 1 1 0 0 1
1 0 1 1 0 1 0
0 1 1 0 0 1 1
0 1 1 1 1 0 0
1 0 1 0 1 0 1
0 0 1 0 1 1 0
1 1 1 1 1 1 1
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The (7, 4) Hamming Code and (7, 3, 1)

1 2 3 4 5 6 7 1’s in weight-3 codewords
0 0 0 0 0 0 0
1 1 0 1 0 0 1

D 0 1 0 1 0 1 0 {2, 4, 6}
C 1 0 0 0 0 1 1 {1, 6, 7}
B 1 0 0 1 1 0 0 {1, 4, 5}
E 0 1 0 0 1 0 1 {2, 5, 7}

1 1 0 0 1 1 0
0 0 0 1 1 1 1

A 1 1 1 0 0 0 0 {1, 2, 3}
F 0 0 1 1 0 0 1 {3, 4, 7}

1 0 1 1 0 1 0
0 1 1 0 0 1 1
0 1 1 1 1 0 0
1 0 1 0 1 0 1

G 0 0 1 0 1 1 0 {3, 5, 6}
1 1 1 1 1 1 1
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Block designs before 1835

The magic square of order 3 (ancient times):

8 1 6

3 5 7

4 9 2

The three rows, three columns, and six extended diagonals form a (9, 3, 1)
block design:

{1, 2, 3}, {4, 5, 6}, {7, 8, 9}
{1, 4, 7}, {2, 5, 8}, {3, 6, 9}
{1, 5, 9}, {2, 6, 7}, {3, 4, 8}
{1, 6, 8}, {2, 4, 9}, {3, 5, 7}

Finally, it is safe to assume that Euclid (early 4th century BCE) would
have drawn the following figure some time during his life:
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4th Century BCE: Euclid’s figure

That Beautiful Design
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THANK YOU!
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