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What is Statistical Disclosure Control

Disclosure Control

research the issues of privacy and confidentiality that arise in the process
collecting data from the public and disclosing the data to a certain group
of people.

Statistical Disclosure Control

explores disclosure control issues from a statistical point of view, including
(but not limited to) proper measures of privacy and confidentiality,
statistical techniques of perturbing the microdata, inference after the
perturbation, etc.
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Why SDC

The law requires confidentiality to be preserved, even without
publishing the data.

The need for sharing more microdata with public is becoming
stronger than ever.

Inference issues with the perturbed data.
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Our Contribution

We focus on identity disclosure based on categorical key variables.

A new measure for identification risk and a associated disclosure
control goal.

A method that accomplishes the preceding goal, using
Post-Randomization (PRAM).

Effects of our method upon the inference issues.
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Definition of Identity Disclosure

Assumptions

Intruder knows the key variable value of the target.

Units are non-differentiable with the same key variable values, and the
intruder would pick one at random as the record of the target.

Identity Disclosure: Correct Match

A correct match happens to a unit when the intruder correctly matches
the unit’s record of non-key variable value, among all the units that share
the same key variable value with the target.

We measure the risk of identity disclosure by the probability of a unit
being correctly matched.
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Example

For example,
If the original data is released after the removal of names,

P{John is correctly matched} = 1

P{Susan is correctly matched} = 0.5

Tapan Nayak, Cheng Zhang (GWU) Short title November 6, 2015 7 / 18



Disclosure Control Goal

P(CM|Sj = a,XB = cj) ≤ ξ

for all a > 0 and j = 1, 2, ....., k .

CM stands for the event that the target unit B is correctly matched
in the aforementioned scenario and matching scheme.

c1, c2, ....., ck are all the cells ( values of the cross-classified variable
formed by all key variables).

Sj is the count of cj in the perturbed released data.

The intruder knows the target’s key variable value, XB = cj
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Our Approach: Post-Randomization(PRAM)

What is PRAM

In a nutshell, PRAM is the randomization mechanism of a categorical
variable using a transition probability where the transition probability is a
function of the data, instead of being predetermined.

EX: A Bernoulli dataset with 10 observations X1,X2, ...,X10. A PRAM
transition matrix could be

P =

(
1− 1

T0

1
T0

1
T1

1− 1
T1

)
where Ti is the count of i , and pij = P{j → i}. If X1 = 0, then change
X1 to 1 with probability 1

T0
.
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Our Approach: Post-Randomization(PRAM)

Our choice of PRAM matrix Let a group contain cells c1, c2, ..., ck . Then
the transition probability matrix is P =

(
(pij)

)
where

pii = 1− θ

Ti
, pji =

θ

(k − 1)Ti

for i , j = 1, 2, ..., k , i 6= j , 0 ≤ θ ≤ 1, and Ti is the count of ci in the
original dataset.
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Our Approach: Post-Randomization(PRAM)

Physical interpretation of θ:

E (number of units moving out of cell i )

=Ti − E (number of units of does not change in cell i)

=Ti − Ti × pii = θ

Being independent of θ, this applies to all cells.
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Our Approach: Post-Randomization(PRAM)

Example:



c1 c2 c3 c4 c5
1− θ θ/4 θ/4 θ/8 θ/4
θ/4 1− θ θ/4 θ/8 θ/4
θ/4 θ/4 1− θ θ/8 θ/4

θ/4 θ/4 θ/4 1− θ
2 θ/4

θ/4 θ/4 θ/4 θ/8 1− θ


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Pros and cons of our approach

Pro:

Easy to operate: reducing the choosing matrix problem to choosing
one parameter for each group

Unbiased estimators: E (Si |Ti ) = Ti

PRAM matrix, being dependent on the original data, is hard to
retrieve;

Con:

Simple structure costs unnecessary perturbation

limited to ξ ≥ 1
3
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Our perturbation mechanism

We set ξ ≥ 1
3

Solve for a common θ for all group.

Solve for the minimum group size k.

Subset only the singleton and doubleton cells. Partition the subset
into groups of at least k cells.

PRAM each group independently.
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Solution of θ and k

ultimate goal: P(CM|Sj = a,XB = cj) ≤ ξ
⇑

P(CM|Sj = a,XB = cj ,T = t) ≤ ξ,
where T is the vector of all cells’ counts

m
P(CM|Sj = 1,XB = cj ,T = t) ≤ ξ,
P(CM|Sj = 2,XB = cj ,T = t) ≤ ξ,

ξ ≥ 1
3

⇑
P(CM|Sj = 2,XB = cj ,T = t) ≤ P(CM|Sj = 1,XB = cj ,T = t) ≤ φ(θ)

φ(θ) = φ(θ) =
Tj−θ

Tj (Tj−θ)+θ2
≤ ξ

Solution

Solve φ(θ) ≤ ξ for θ. Then plug θ in
P(CM|Sj = 2,XB = cj ,T = t) ≤ P(CM|Sj = 1,XB = cj ,T = t) to solve
the smallest possible k .
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Data Quality

The exploration on data quality serves mostly as a guide of how to
partition all categories into groups, so that the groups are formed in the
way that it has a total variation as small as possible.
Numerical findings:

Total variation from perturbing using PRAM, i.e.∑
var(Si |Ti ),

is ignorable compared to the total variation from sampling.

Dividing all cells into more groups with smallest possible group size is
optimal in terms of lowering the total variation from perturbation.
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Future Research

ξ < 1
3

Different form of block transition matrix

Sampling weights

Other partitioning criteria

Variation on the joint distribution between key and non-key variables
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Thank You
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