Octonions, Quaternions, and Involutions

Nathaniel Schwartz Joint work with John Hutchens

> Washington College nschwartz2@washcoll.edu

November 7th, 2015

Contents

- 1 Bilinear forms / Quadratic forms
- 2 Algebras
- **3** Composition algebras
- 4 Doubling
- 5 Automorphisms
- 6 Results
- Interesting Things
- 8 Current & Future work

Bilinear & Quadratic Forms

Let V be a finite dimensional vector space over a field k. Then a **bilinear form** is a mapping

 $\langle \ , \ \rangle: V \times V \to k$

that is linear in both coordinates. We say that $\langle \ , \ \rangle$ is nondegenerate if

$$V^{\perp} = \{ x \in V \mid \langle x, y \rangle = 0 \ \forall \ y \in V \} = 0.$$

Bilinear & Quadratic Forms

Let V be a finite dimensional vector space over a field k. Then a **bilinear form** is a mapping

 $\langle \ , \ \rangle: V \times V \to k$

that is linear in both coordinates. We say that $\langle \ , \ \rangle$ is nondegenerate if

$$V^{\perp} = \{ x \in V \mid \langle x, y \rangle = 0 \ \forall \ y \in V \} = 0.$$

A quadratic form is a mapping

$$q: V \to k$$

such that $q(\lambda x) = \lambda^2 q(x)$ for all $x \in V$, $\lambda \in k$. This uniquely determines a bilinear form

$$\langle x, y \rangle = \mathbf{q}(x+y) - \mathbf{q}(x) - \mathbf{q}(y).$$

Quadratic Forms

Notice that

$$\langle x, x \rangle = q(x + x) - q(x) - q(x)$$
$$= q(2x) - 2q(x)$$
$$= 4q(x) - 2q(x)$$
$$= 2q(x)$$

When the characteristic is not 2, the associated symmetric bilinear form defines the quadratic form. If k has characteristic 2, then $\langle x, x \rangle = 0$ for all $x \in V$. Thus \langle , \rangle is alternate and symmetric, and the quadratic form cannot be recovered from the bilinear form.

Quadratic Forms

Notice that

$$\langle x, x \rangle = q(x + x) - q(x) - q(x)$$
$$= q(2x) - 2q(x)$$
$$= 4q(x) - 2q(x)$$
$$= 2q(x)$$

When the characteristic is not 2, the associated symmetric bilinear form defines the quadratic form. If k has characteristic 2, then $\langle x, x \rangle = 0$ for all $x \in V$. Thus \langle , \rangle is alternate and symmetric, and the quadratic form cannot be recovered from the bilinear form.

A vector x is called **isotropic** if q(x) = 0, and **anisotropic** otherwise.

Algebras

An **algebra** A over a field k is a vector space equipped with a multiplication which is **not necessarily** associative:

 $x(yz) \neq (xy)z$

or commutative:

 $xy \neq yx.$

Algebras

An **algebra** A over a field k is a vector space equipped with a multiplication which is **not necessarily** associative:

 $x(yz) \neq (xy)z$

or commutative:

$$xy \neq yx.$$

Examples:

- The complex numbers over (Complex multiplication).
- Euclidean 3-space (Cross product).
- Lie algebras (Lie bracket).
- Jordan Algebras (Jordan multiplication).

Jordan algebras are commutative.

Composition Algebras

A composition algebra C is an algebra over a field together with a quadratic form which admits composition:

 $\mathbf{q}(xy) = \mathbf{q}(x) \, \mathbf{q}(y).$

Composition algebras may or may not be associative.

Composition Algebras

A composition algebra C is an algebra over a field together with a quadratic form which admits composition:

 $\mathbf{q}(xy) = \mathbf{q}(x) \, \mathbf{q}(y).$

Composition algebras may or may not be associative.

A **subalgebra** D of a composition algebra C is a linear subspace which is nonsingular, closed under multiplication, and contains the identity element e. (A subspace is **nonsingular** if the restriction of \langle , \rangle is nondegenerate.)

Composition Algebras

A composition algebra C is an algebra over a field together with a quadratic form which admits composition:

 $\mathbf{q}(xy) = \mathbf{q}(x) \, \mathbf{q}(y).$

Composition algebras may or may not be associative.

A **subalgebra** D of a composition algebra C is a linear subspace which is nonsingular, closed under multiplication, and contains the identity element e. (A subspace is **nonsingular** if the restriction of \langle , \rangle is nondegenerate.)

Notice that, so far, there has been no restriction made on the dimension of a composition algebra.

Let C be a composition algebra, and let D be a finite-dimensional subalgebra. Then D is a nonsingular subspace, so $C = D \oplus D^{\perp}$, and D^{\perp} is also nonsingular.

Lemma

If D is a finite-dimensional proper subalgebra of C, then there exists $a \in D^{\perp}$ so that $q(a) \neq 0$, then $D_1 = D \oplus Da$ is a composition subalgebra.

Note: the quadratic form, product and conjugation on ${\cal D}_1$ require attention.

Let C be a composition algebra, and let D be a finite-dimensional subalgebra. Then D is a nonsingular subspace, so $C = D \oplus D^{\perp}$, and D^{\perp} is also nonsingular.

Lemma

If D is a finite-dimensional proper subalgebra of C, then there exists $a \in D^{\perp}$ so that $q(a) \neq 0$, then $D_1 = D \oplus Da$ is a composition subalgebra.

Note: the quadratic form, product and conjugation on ${\cal D}_1$ require attention.

Also notice that Da and D have the same dimension, so that D_1 has twice the dimension of D. In other words, we've just doubled D.

Lemma

If C is a composition algebra and D is a finite-dimensional proper subalgebra, then D is associative. Moreover, a subalgebra $D \oplus Da$ is associative if and only if D is both associative and commutative.

Lemma

If C is a composition algebra and D is a finite-dimensional proper subalgebra, then D is associative. Moreover, a subalgebra $D \oplus Da$ is associative if and only if D is both associative and commutative.

Lemma

Let D be a composition algebra, and let $\lambda \in k^*$, and let $C = D \oplus D$.

- **1** If D is associative, then C is a composition algebra.
- **2** *C* is associative if and only if *D* is commutative and associative.

Lemma

Let C be a composition algebra of k. If $char(k) \neq 2$, then D = ke is a composition algebra of dimension 1. A 2-dimensional algebra is obtained by doubling.

Lemma

Let C be a composition algebra of k. If $char(k) \neq 2$, then D = ke is a composition algebra of dimension 1. A 2-dimensional algebra is obtained by doubling.

If char(k) = 2, then ke is singular, since $\langle e, e \rangle = 0$. (There are no 1-dimensional composition algebras in this case).

Lemma

Let C be a composition algebra of k. If $char(k) \neq 2$, then D = ke is a composition algebra of dimension 1. A 2-dimensional algebra is obtained by doubling.

If char(k) = 2, then ke is singular, since $\langle e, e \rangle = 0$. (There are no 1-dimensional composition algebras in this case).

In case char(k) = 2, take some $\langle a, e \rangle \neq 0$. Then a 2-dimensional composition algebra is $ke \oplus ka$.

Lemma

Let C be a composition algebra of k. If $char(k) \neq 2$, then D = ke is a composition algebra of dimension 1. A 2-dimensional algebra is obtained by doubling.

If char(k) = 2, then ke is singular, since $\langle e, e \rangle = 0$. (There are no 1-dimensional composition algebras in this case).

In case char(k) = 2, take some $\langle a, e \rangle \neq 0$. Then a 2-dimensional composition algebra is $ke \oplus ka$.

In either case, we get a 2-dimensional composition algebra.

Theorem

Every composition algebra is obtained by repeated doubling, starting from ke if $char(k) \neq 2$ or from the 2-dimensional algebra if char(k) = 2. In this way, we obtain algebras of dimensions 1 (if $char(k) \neq 0$), 2, 4, and 8. So we have a sequence

 $D_1 \subset D_2 \subset D_3.$

Theorem

Every composition algebra is obtained by repeated doubling, starting from ke if $char(k) \neq 2$ or from the 2-dimensional algebra if char(k) = 2. In this way, we obtain algebras of dimensions 1 (if $char(k) \neq 0$), 2, 4, and 8. So we have a sequence

 $D_1 \subset D_2 \subset D_3.$

Using the lemmas, and since D_1 is commutative and associative, we have that D_2 is associative. However, D_2 is not commutative.

Theorem

Every composition algebra is obtained by repeated doubling, starting from ke if $char(k) \neq 2$ or from the 2-dimensional algebra if char(k) = 2. In this way, we obtain algebras of dimensions 1 (if $char(k) \neq 0$), 2, 4, and 8. So we have a sequence

 $D_1 \subset D_2 \subset D_3.$

Using the lemmas, and since D_1 is commutative and associative, we have that D_2 is associative. However, D_2 is not commutative.

(This fact is not completely obvious).

Theorem

Every composition algebra is obtained by repeated doubling, starting from ke if $char(k) \neq 2$ or from the 2-dimensional algebra if char(k) = 2. In this way, we obtain algebras of dimensions 1 (if $char(k) \neq 0$), 2, 4, and 8. So we have a sequence

 $D_1 \subset D_2 \subset D_3.$

Using the lemmas, and since D_1 is commutative and associative, we have that D_2 is associative. However, D_2 is not commutative.

(This fact is not completely obvious).

So D_3 is not associative, and thus no algebra properly contains D_3 . So we are done.

A composition algebra C is called **split** if q is isotropic. If q is anisotropic, then the composition algebra is called **division**. Split algebras over the same field are isomorphic.

A composition algebra C is called **split** if q is isotropic. If q is anisotropic, then the composition algebra is called **division**. Split algebras over the same field are isomorphic.

In the split case, the four dimensional composition algebra is isomorphic to the 2×2 matrices over k with the determinant as the quadratic form.

A composition algebra C is called **split** if q is isotropic. If q is anisotropic, then the composition algebra is called **division**. Split algebras over the same field are isomorphic.

In the split case, the four dimensional composition algebra is isomorphic to the 2×2 matrices over k with the determinant as the quadratic form.

The 4-dimensional composition algebras are called **quaternion** algebras, and the 8-dimensional algebras are called **octonion** algebras.

A composition algebra C is called **split** if q is isotropic. If q is anisotropic, then the composition algebra is called **division**. Split algebras over the same field are isomorphic.

In the split case, the four dimensional composition algebra is isomorphic to the 2×2 matrices over k with the determinant as the quadratic form.

The 4-dimensional composition algebras are called **quaternion** algebras, and the 8-dimensional algebras are called **octonion** algebras.

It is known that all quaternion and octonion algebras are split when taken over a perfect field k of characteristic 2.

Automorphism Group

Let C be an octonion algebra. The automorphisms of C that fix a quaternion subalgebra D form a group isomorphic to G_2 . That is,

 $\operatorname{Aut}(C) \simeq G_2.$

Automorphism Group

Let C be an octonion algebra. The automorphisms of C that fix a quaternion subalgebra D form a group isomorphic to G_2 . That is,

 $\operatorname{Aut}(C) \simeq G_2.$

Springer & Veldkamp show that every automorphism $g \in \operatorname{Aut}(C)$ has the form

$$g(x + yu) = cxc^{-1} + (pcyc^{-1})u,$$

where $w \in D^{\perp}$, $q(w) \neq 0$, q(p) = 1, and $q(c) \neq 0$. Here x, y, c and $p \in D$ and $u \in D^{\perp}$.

Automorphism Group

Let C be an octonion algebra. The automorphisms of C that fix a quaternion subalgebra D form a group isomorphic to G_2 . That is,

 $\operatorname{Aut}(C) \simeq G_2.$

Springer & Veldkamp show that every automorphism $g\in \operatorname{Aut}(C)$ has the form

$$g(x + yu) = cxc^{-1} + (pcyc^{-1})u,$$

where $w \in D^{\perp}$, $q(w) \neq 0$, q(p) = 1, and $q(c) \neq 0$. Here x, y, c and $p \in D$ and $u \in D^{\perp}$.

Also, every automorphism of G_2 is inner.

Some Preliminary Results

Theorem

Let C be an octonion algebra. If k is a perfect field of characteristic 2, there is one isomorphism class of inner k-involutions of $\operatorname{Aut}(C)$. In this case, the fixed-point group of an inner k-involution is isomorphic to

 $\operatorname{SL}_2(k) \times G_a(k)$

Some Preliminary Results

Theorem

Let C be an octonion algebra. If k is a perfect field of characteristic 2, there is one isomorphism class of inner k-involutions of Aut(C). In this case, the fixed-point group of an inner k-involution is isomorphic to

 $\operatorname{SL}_2(k) \times G_a(k)$

For the non-split case, when k is not a perfect field of characteristic 2, we don't know yet.

Some Preliminary Results

Theorem

Let C be an octonion algebra. If k is a perfect field of characteristic 2, there is one isomorphism class of inner k-involutions of $\operatorname{Aut}(C)$. In this case, the fixed-point group of an inner k-involution is isomorphic to

 $\operatorname{SL}_2(k) \times G_a(k)$

For the non-split case, when k is not a perfect field of characteristic 2, we don't know yet.

Question: Are there always elements of order 2 in a division quaternion algebra?

Thank you!

Questions?