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Bilinear & Quadratic Forms

Let V be a finite dimensional vector space over a field k. Then a
bilinear form is a mapping

〈 , 〉 : V × V → k

that is linear in both coordinates. We say that 〈 , 〉 is
nondegenerate if

V ⊥ = {x ∈ V |〈x, y〉 = 0 ∀ y ∈ V } = 0.

A quadratic form is a mapping

q : V → k

such that q(λx) = λ2 q(x) for all x ∈ V , λ ∈ k. This uniquely
determines a bilinear form

〈x, y〉 = q(x+ y)− q(x)− q(y).

3 / 14



Bilinear & Quadratic Forms

Let V be a finite dimensional vector space over a field k. Then a
bilinear form is a mapping

〈 , 〉 : V × V → k

that is linear in both coordinates. We say that 〈 , 〉 is
nondegenerate if

V ⊥ = {x ∈ V |〈x, y〉 = 0 ∀ y ∈ V } = 0.

A quadratic form is a mapping

q : V → k

such that q(λx) = λ2 q(x) for all x ∈ V , λ ∈ k. This uniquely
determines a bilinear form

〈x, y〉 = q(x+ y)− q(x)− q(y).

3 / 14



Quadratic Forms

Notice that

〈x, x〉 = q(x+ x)− q(x)− q(x)

= q(2x)− 2 q(x)

= 4 q(x)− 2 q(x)

= 2 q(x)

When the characteristic is not 2, the associated symmetric bilinear
form defines the quadratic form. If k has characteristic 2, then
〈x, x〉 = 0 for all x ∈ V . Thus 〈 , 〉 is alternate and symmetric,
and the quadratic form cannot be recovered from the bilinear form.

A vector x is called isotropic if q(x) = 0, and anisotropic
otherwise.
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Algebras

An algebra A over a field k is a vector space equipped with a
multiplication which is not necessarily associative:

x(yz) 6= (xy)z

or commutative:
xy 6= yx.

Examples:

The complex numbers over (Complex multiplication).

Euclidean 3-space (Cross product).

Lie algebras (Lie bracket).

Jordan Algebras (Jordan multiplication).

Jordan algebras are commutative.
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Composition Algebras

A composition algebra C is an algebra over a field together with
a quadratic form which admits composition:

q(xy) = q(x) q(y).

Composition algebras may or may not be associative.

A subalgebra D of a composition algebra C is a linear subspace
which is nonsingular, closed under multiplication, and contains the
identity element e. (A subspace is nonsingular if the restriction of
〈 , 〉 is nondegenerate.)

Notice that, so far, there has been no restriction made on the
dimension of a composition algebra.
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Doubling

Let C be a composition algebra, and let D be a finite-dimensional
subalgebra. Then D is a nonsingular subspace, so C = D ⊕D⊥,
and D⊥ is also nonsingular.

Lemma
If D is a finite-dimensional proper subalgebra of C, then there
exists a ∈ D⊥ so that q(a) 6= 0, then D1 = D ⊕Da is a
composition subalgebra.

Note: the quadratic form, product and conjugation on D1 require
attention.

Also notice that Da and D have the same dimension, so that D1

has twice the dimension of D. In other words, we’ve just doubled
D.
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Doubling

Lemma
If C is a composition algebra and D is a finite-dimensional proper
subalgebra, then D is associative. Moreover, a subalgebra D ⊕Da
is associative if and only if D is both associative and commutative.

Lemma
Let D be a composition algebra, and let λ ∈ k∗, and let
C = D ⊕D.

1 If D is associative, then C is a composition algebra.

2 C is associative if and only if D is commutative and
associative.
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Differences in Low Dimension

Lemma
Let C be a composition algebra of k. If char(k) 6= 2, then D = ke
is a composition algebra of dimension 1. A 2-dimensional algebra
is obtained by doubling.

If char(k) = 2, then ke is singular, since 〈e, e〉 = 0. (There are no
1-dimensional composition algebras in this case).

In case char(k) = 2, take some 〈a, e〉 6= 0. Then a 2-dimensional
composition algebra is ke⊕ ka.

In either case, we get a 2-dimensional composition algebra.
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Structure Theorem

Theorem
Every composition algebra is obtained by repeated doubling,
starting from ke if char(k) 6= 2 or from the 2-dimensional algebra
if char(k) = 2. In this way, we obtain algebras of dimensions 1 (if
char(k) 6= 0), 2, 4, and 8. So we have a sequence

D1 ⊂ D2 ⊂ D3.

Using the lemmas, and since D1 is commutative and associative,
we have that D2 is associative. However, D2 is not commutative.

(This fact is not completely obvious).

So D3 is not associative, and thus no algebra properly contains
D3. So we are done.
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Types of Compositions Algebras

A composition algebra C is called split if q is isotropic. If q is
anisotropic, then the composition algebra is called division. Split
algebras over the same field are isomorphic.

In the split case, the four dimensional composition algebra is
isomorphic to the 2× 2 matrices over k with the determinant as
the quadratic form.

The 4-dimensional composition algebras are called quaternion
algebras, and the 8-dimensional algebras are called octonion
algebras.

It is known that all quaternion and octonion algebras are split
when taken over a perfect field k of characteristic 2.
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Automorphism Group

Let C be an octonion algebra. The automorphisms of C that fix a
quaternion subalgebra D form a group isomorphic to G2. That is,

Aut(C) ' G2.

Springer & Veldkamp show that every automorphism g ∈ Aut(C)
has the form

g(x+ yu) = cxc−1 + (pcyc−1)u,

where w ∈ D⊥, q(w) 6= 0, q(p) = 1, and q(c) 6= 0. Here x, y, c
and p ∈ D and u ∈ D⊥.

Also, every automorphism of G2 is inner.
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Some Preliminary Results

Theorem
Let C be an octonion algebra. If k is a perfect field of
characteristic 2, there is one isomorphism class of inner
k-involutions of Aut(C). In this case, the fixed-point group of an
inner k-involution is isomorphic to

SL2(k)×Ga(k)

For the non-split case, when k is not a perfect field of
characteristic 2, we don’t know yet.

Question: Are there always elements of order 2 in a division
quaternion algebra?
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Thank you!

Questions?
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