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On page 416 of volume I of The Correspondence of 
Isaac Newton edited by H. W. Turnbull et al, there 
appears a letter from Isaac Newton (1642-1726) to 
Robert Hooke (1635-1703) dated February 5, 1675 
with a rather inconspicuous line, only to become 
one of the most often quoted statements in the 
history of mathematics: 

If I have seen further it is by standing on ye shoulders 
of Giants.



It was indeed the works of these giants – François 
Viète (1540-1603), William Oughtred (1575-1660), 
René Descartes (1596-1650), John Wallis (1616-
1703), and Isaac Barrow (1630-1677) that helped 
Newton attain the mathematical maturity that 
would culminate in the complete development of 
the Fundamental Theorem of Calculus.



In this paper we will look into the work of one of 
these giants - the “calculus” of Descartes, and see 
how it pertains to Newtonian calculus.



René Descartes (1596-1650) 

Born to moderately wealthy parents in La Haye, 
France.  

Received an excellent formal and traditional 
education at the Jesuit College of La Flèche.  

Eventually, he became apprehensive of the 
theories so many of his contemporaries and 
teachers professed and began to question the kind 
of knowledge that was being imparted to him.  





Tired of what he felt to be fruitless intellectual 
discussions that seemed to be authoritarian and 
doctrinaire in nature, put aside his studies and 
wanted to take up a career in the military. 

It was as a soldier in the army of the Duke of 
Bavaria, Descartes, found himself on the night of 
November 10, 1619, “shut up alone in a stove-
heated room”,  and paradoxically enough, 
scientific modernism began with a set of three 
consecutive dreams that transpired on that night. 



For a period of several days prior to that date, 
Descartes had been feeling a “steady rise of 
temperature in his head” (Jaki 1978, 65): How 
could he establish a foundation for all knowledge 
so that it might have the same unity and certainty 
as mathematics?  As a matter of fact, he was to 
write later in the famous Discourse



Most of all I was delighted with Mathematics 
because of the certainty of its demonstrations and 
the evidence of its reasoning; but I did not yet 
understand its true use, and, believing that it was 
of service only in the mechanical arts, I was 
astonished that, seeing how firm and solid was its 
basis, no loftier edifice had been reared thereupon 
(Hutchins 1952, 43).



During the dream Descartes saw before him two 
books.  One was a dictionary, which appeared to 
him to be of little interest and use.  The other was 
a compilation of poetry titled Corpus Poetarum in 
which there appeared to be a union of philosophy 
with wisdom.  



The way in which Descartes interpreted this 
dream set the stage for the rest of his life-long 
philosophical endeavors.  For Descartes, the 
dictionary stood merely for scientific facts 
gathered together in a sterile, dry, disconnected, 
and unimaginative way, whereas the collection of 
poems symbolized the union of philosophy with 
wisdom.



He became convinced that mathematics was the 
key to the secrets of nature.  All of the sciences, he 
believed, were interconnected by mathematical 
links.  The dreams showed Descartes that the 
entire universe was a great, harmonious, and 
mathematically designed machine.



In 1628 he settled in Amsterdam and devoted the 
next twenty years of his life to critical and 
profound scrutiny of the nature of truth, the 
existence of God, the physical structure of the 
universe, and the study of mathematics.  

In particular, from 1629 to 1633 he built up a 
cosmological theory, the theory of vortices, to 
explain all natural phenomena.  



The vortex theory dominated seventeenth century 
thought until it was ultimately displaced by the 
cosmologies of Galileo and Newton.  

Descartes defined a vortex as a large circling band 
of material particles.  The vortex theory attempted 
to explain celestial motion, especially orbits of 
planets by situating them in these vortices. 

But since the theory was a heliocentric one, he 
delayed its publication.



This famous book, Le Monde, where he introduced 
his theory of vortices was published in 1664, 14 
years after his death, and made him as dominant 
a figure in cosmology as he had been in 
mathematics and philosophy.

In 1648 Descartes was invited to Sweden by 
Queen Christina.  He left the comfort of his home 
to tutor a queen whose work day started at 5 a.m. 
in an icy cold library.  Eventually, he caught cold 
and died in 1650.  



Descartes’ philosophy, a philosophy of rationalism –
knowledge comes from the intellect not from the 
senses – put him at odds with Aristotelian and 
consequently with Catholic teachings.  
All mental content could be reduced to three ideas 
that are innate and cannot be gained by experience of 
the external world: the idea one has of oneself, the 
idea one has of God, and the idea one has of 
materiality.  
It is from these primary and irreducible ideas one 
could derive, through the intellectual process of 
deduction, all the content of human science and 
wisdom. ( Discours de la méthode pour bien conduire sa
raison et chercher la vérité dans les sciences 1667)



Dissatisfaction with dogmatically pronounced tenets, and 
establishment of the critical method of philosophy based on 
questioning everything led him to the following conclusions:

I think, therefore I am (Cogito ergo sum or Je pense, donc je suis)

Each phenomenon must have a cause

An effect cannot be greater than the cause

The mind within itself has the ideas of perfection, space, time, 
and motion



Time and space are existential forms of real world 
and matter is its substance.  At a given moment in 
time a given piece of matter occupies a given 
portion of space.  Thus, motion connects these 
three ingredients intimately.  Descartes wanted to 
construct all natural occurrences from these basic 
concepts and thus reduce them to motion 
(Principia Philosophae Part II, 1644) 



Motion was defined as “nothing more than the 
action by which any body passes from one place to 
another, from the vicinity of those bodies, which are 
immediately contiguous to it and are viewed as if at 
rest, to the vicinity of others.” (Principia II, 24), 
which is too circular to be a scientifically 
acceptable definition – the word “motion” is not 
defined, it is simply replaced by the word 
“passes.”



According to Descartes there were two causes of 
motion: the general cause governing all motion that 
existed in the world, and the particular cause
dealing with the parts of matter acquiring 
motions that they did not have before.  The 
general cause was God.  The particular cause was 
subject to some laws, which he specified in Le 
Monde as the three laws of motion (Descartes’ Laws 
of Motion), which served as a prototype to 
Newton’s laws of motion:



Law of Persistence.  Each part of matter, in particular, continues 
always to be in the same state, as long as an encounter with others 
does not constrain it to change (Le Monde 7, AT 11:38).  

Law of Direction. When a body moves, even though its movement 
occurs most often in a curved line and though it cannot even make 
any motion that is not in some way circular […], still each of its parts 
in particular tends always to continue its own movement in a straight 
line.  And so their action, that is, their inclination to move, is different 
from their movement (ibid, 7, AT 11:44). 

The third law (ibid, 7, AT 11:41):
When a body impels another, it cannot give it any motion without 
losing at the same time the same amount of its own motion; nor take 
from it any, without augmenting its own by the same amount.



The Discours de la méthode had three appendices: 
La Dioptrique, Les Météores, and La Géométrie. 
(1637)  To show what his new method can 
accomplish outside of philosophy, Descartes had 
applied it to geometry and the outcome was La 
Géométrie, a short tract included with the 
anonymously published Discourse on Method. 



Details a groundbreaking program for geometrical 
problem-solving—what he refers to as a “geometrical 
calculus” (calcul géométrique)—that rests on a 
distinctive approach to the relationship between 
algebra and geometry. 

Offers innovative algebraic techniques for analyzing 
geometrical problems, a novel way of understanding 
the connection between a curve's construction and its 
algebraic equation, and an algebraic classification of 
curves that is based on the degree of the equations 
used to represent these curves.



La Géometrie was composed of three books:  
1. Problems Which Can Be Constructed by Means of 

Circles and Straight Lines Only
2. On the Nature of Curved Lines - devoted mainly to 

applying algebra to geometry, i.e., to analytic 
geometry. 

3. This part was on the theory of equations.  Two 
important algebraic conventions were introduced 
here:  using the last letters of the alphabet x, y, z as 
unknowns and the first letters of the alphabet as 
constant parameters  and interpreting a quantity 
squared as an area, and a quantity cubed as a 
volume.  



The fundamental insight on which Descartes based 
his theory was described in the opening sentence of 
La Géometrie:

Any problem in geometry can easily be reduced to 
such terms that a knowledge of the lengths of certain 
straight lines is sufficient for its construction 
(Hutchins 1952, 295). 

In other words, geometric problems could now be 
solved by algebraic means.  



Generalizations of Pappus’ three-line problem 
and four-line problem.  Descartes set out to show 
algebraically that the locus was a conic section, as 
stated without proof by Pappus, and the result 
was the birth of coordinate (analytic) geometry. 

Descartes never used the word coordinate.  The 
term was later introduced by Leibniz.



Most importantly, he suggested a method for finding 
the equation of the tangent line to a curve (actually 
his method was for constructing the normal) in Book 
II La Géometrie, On the Nature of Curved Lines.  

He would start with the equation of the curve and the 
location of the point P, at which the tangent was to be 
drawn, on the curve.  He would then, using algebra, 
find the equation of the circle passing through the 
point P with center on the x-axis that had the same 
tangent line.  Then he would construct the line 
tangent to the circle using a compass and a 
straightedge. 



More formally, suppose we have a curve f(x, y) = 
0 and we want to draw the normal line at the 
point P(𝑥0, 𝑦0) .  Suppose moreover that this 
normal line intersects the x-axis at the point 
𝑄(𝑥1, 0).  Then the equation of the circle with 
center at Q and passing through the point P is

𝑥 − 𝑥1
2 + 𝑦2 = 𝑥0 − 𝑥1

2 + 𝑦0
2

Now, eliminating the y variable between this 
equation and the equation f(x, y) = 0, gives us a 
relation involving only x and 𝑥1, say, 𝑔(𝑥, 𝑥1).  



Although in general the circle will intersect the 
curve in two points, since PQ is the normal, these 
two points will coincide and the circle will 
become tangent to the curve.  

Thus, all one needs to do is to impose the 
condition that will make the equation  𝑔(𝑥, 𝑥1)= 0 
have double roots, and use that to determine the 
value of 𝑥1.
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                                     Figure 4.8 Descartes’s Construction of the Tangent Line  
                                                          to an Arbitrary Curve at a Given Point 
 



To illustrate the point, let us determine the 
tangent to the parabola 𝑦2 = 2𝑥

at the point (8, 4).  The equation of the circle with 
center at  and passing through the point (8, 4) is

𝑥 − 𝑥1
2 + 𝑦2 = 8 − 𝑥1

2 + 16

Since 𝑦2 = 2𝑥, we get

𝑥2 + 2 − 2𝑥1 𝑥 + 16𝑥1 − 80 = 0



Now in order for a quadratic to have double roots 
it must be of the form 

𝑥2 + 2𝑡𝑥 + 𝑡2 = 0

Thus,
1 − 𝑥1 = 𝑡

and
16𝑥1 − 80 = 𝑡2

implying 𝑥1 = 9. So the normal is the line that 
passes through the points (9,0) and (8, 4).  So, the 
equation of the normal is 𝑦 = −4𝑥 + 36 and that 
of the tangent is 𝑦 =  1 4 𝑥 + 2


