Sonobe Origami for enriching understanding of geometric concepts in three dimensions

DONNA A. DIETZ American University Washington, D.C.

Donna Dietz, American University Sonobe Origami for enriching understanding of geometric concepts in three dimensions

St. Mary's College of Maryland November 7, 2015. MAA Section Meeting 3:15 pm -3:35 pm Goodpaster Hall Room 109

"Programs that take advantage of paper folding to teach mathematics are thriving in many parts of the world," according to the organizers of the MAA origami-themed Contributed Paper Session to be held at the JMM in January 2016. But, K-12 should not be having all the fun! In this talk, I will show some ways of stimulating student engagement using sonobe origami. These activities can be used in General Education mathematics "appreciation" courses or for Non-Euclidean Geometry for mathematics majors. Specifically, the goals are enriching student understanding of surface curvatures and helping them understand the duality of the regular polyhedra using these folded paper objects.

Things to chat about...

- Construction overview and classroom hints
- Duality of regular polyhedra (aka Platonic Solids)
- Euler's $\boldsymbol{\chi}$ for topological classification
- Angle deficit for topological classification
- Gauss-Bonnet Theorem
- Bonus Puzzle!

Construction Basics

- tinyurl.com/sonobe
- I also have videos on YouTube
- for Gen Ed course- one class period
- students spend about an hour outside of class
- 30 pieces of paper per student
- chirality compatibility is a construction issue
- assembly is a learning experience for students

The Paper I Use in Class:

Roll over image to zoom in

Neenah Astrobrights Note Cube, 3.5 X 3.5 Inches, Assorted, 550 Count (20400)

by Neenah

★★★★★★ * 32 customer reviews

Price: \$11.07 *Prime* | FREE Same-Day

Delivered today for FREE with qualifying orders over \$35. Details

In Stock.

Ships from and sold by Amazon.com. Gift-wrap available.

Want it TODAY, Oct. 29? Order within 8 hrs 50 mins and choose Same-Day Delivery at checkout. Details

- Acid free for great quality that doesn't deteriorate
- Il Bright colors
- Perfect for any home or office
- Perfect to keep by the phone
- 550 Sheets

Pros and Cons

- No glue
- No scissors
- Straightedge and Compass is equivalent to folding
- Pride in crafting

- Only time for one large project rather than many small ones
- Object is more complex than regular polyhedra

Elliptic Vertex

Hyperbolic Vertex

Make 30 of those

Ok, Great!

Now, what is this sonobe project good for?

Duality of Regular Polyhedra

mathforum.org

Cube with Octahedron

behance.net

Icosahedron with Dodecahedron

behance.net

Tetrahedron is self dual

math.brown.edu

mathcraft.wonderhowto.com

How much paper is that!?

To build the basic object, consider the underlying icosahedron (20 sides) and count pyramids.

Each side has a pyramid attached which uses 3 units. But each unit is used in two pyramids.

20*3/2 = 30

Other objects

- Tetrahedron: 4*3/2 = 6 units, but it's a cube!
- Octahedron: 8*3/2 = 12 units
- Icosahedron: 20*3/2 = 30 units
- Massive ball: (12x5)*3/2 = 90 units

All of these objects are based off of an underlying triangular mesh frame.

- 6 vertices = v
- 9 edges = e
- 4 faces = f
- $\chi = v e + f$
- χ = 1

for single components with no holes

- 16 vertices = v
- 28 edges = e
- 14 faces = f
- 2 "blobs" = b
- $\chi = v e + f b$
- χ = (16+14)–(28+2) = 0
 for "donuts"

- 8 vertices = v
- 12 edges = e
- 6 faces = f
- 1 "blob" = b
- $\chi = v e + f b$
- $\chi = 8 12 + 6 1 = 1$

for "spheres"

• 6+8 vertices = v

- (3+3/2)*8 edges = e
- 8*3 faces = f
- 1 "blob" = b
- $\chi = v e + f b$
- $\chi = 14 36 + 24 1 = 1$ for "spheres"

mathcraft.wonderhowto.com

- 20 + 12 vertices = v
- (3+3/2)*20 edges = e
- 20*3 faces = f
- 1 "blob" = b
- $\chi = v e + f b$
- $\chi = 32 90 + 60 1 = 1$ for "spheres"

Angle deficit for topological classification
Angle deficit for topological classification

"And now for something completely different..."

Angle deficit for topological classification

• Imagine a flattened cube

- At each vertex, 90 degrees is "missing"
- 8 * 90 = 720
- Total Angle Deficit is
 720

mathcraft.wonderhowto.com

Angle deficit for topological classification

- A flattened cube!
- At each vertex, 90 degrees is "missing"
- 8 * 90 = 720
- Total Angle Deficit is
 720

Cuboctahedron Template

Cuboctahedron in 3D

- 12 vertices
- 60 degree deficit per
- 12*60=720
- Total Angle Deficit is
 720

Sonobe!

- 20 vertices with
 90 degree deficit
 (elliptic curvature!)
- 12 vertices with
 - -90 degree deficit

(hyperbolic curvature)

• 20*90-12*90=720

But....

Total Angle Deficit = $4\pi * \chi$

Gauss-Bonnet Theorem

Gauss-Bonnet Theorem

If we trace out a closed curve on a surface, the total enclosed Gauss curvature (total angle deficit) is 2π minus the total angle defect (angles of deflection) around the curve.

Gauss-Bonnet simple example

- Total angle defect is zero. (This paper ribbon is a geodesic.)
- Each half of the sphere must have the same enclosed Gauss curvature.
- Total must be 4π
- Each half contains

2π

Gauss-Bonnet simple example

- Total angle defect is zero. (This paper ribbon is a geodesic.)
- Each half of the can must have the same enclosed Gauss curvature.
- Total must be 4π
- Each half contains

2π

Gauss-Bonnet simple example

- Total angle defect is zero.
- Each half of the cube must have the same enclosed Gauss curvature.
- Each half contains 2π
- Each vertex has $\pi/2$

- Total angle defect is:
 2(180-72)+2(180-120)
 336
- 360-336=24 degrees
- Angle deficit: 360-(60+60+108+108)
 24 degrees

- Total angle defect is: 3(180-84)
 288
- 360-288=72 degrees
- Angle deficit: 3(360-60-60-108-108)
 720 degrees

- Total angle defect is: 5(180-120)
 300
- 360-300 = 60 degrees
- Angle deficit:
 5(360-108-120-120)
 60 degrees

- Total angle defect is zero (geodesic!)
- 360 degrees is promised
- Angle deficit:
 5(90)+(-90)
 360 degrees

Bonus Puzzle

Use 3 colors, 10 pieces of each color.

Try to make sure you get exactly one of each color on each pyramid.

(Solve using a graph first.)

Bonus Puzzle Solution

donnadietz.com/YouTubeLinks.html

http://www.donnadietz.com

profdiet	zAU - YouTube - Mozilla Fire	fox		🗱 🖶 🖂 📼 🦘	🗟 🕪)) Thu Oct 29	8:52 AM 👤 I	Donna Dietz 🗄	₽
	💿 profdietzAU - YouTube	× 🛨						
	(A https://www.youtub	e.com/user/profdietzAU/playlists		C Search	☆ 自	□ ↓	☆ 9 Ξ	≣
×	🚥 G 🚺 🌢 🛄 🤁 🗆 /	AU-VPN 🖉 WeBWorK 🖪 AU-Alerts 🦳 myAU 💱 GRAYprin	t 🌻 Wolfram 👗	∽				
	= You Tube			Q		Upload	¢ 🔇	4
	i his sources f	profdietzAU Videos Playlist	s Channels Dis	cussion About				
		Final Exam Review MATH154						
·	2	Math154FinalReview02 projective geometry n=5		19:19				
		Viper an serinalReviewQ3 projectine serine 3		7:20				
(1)		Math154FinalReviewQ6						
		View full playlist (10 videos)						
	1 84 20000888		X					
0000								
		Sonobe Instructions		(I				
		5 Making a sonobe unit		4:53	-			
		VIDEOS Sonobe octabedron		8:07	50 0			
		View full playlist (5 videos)		0.07				
		view ion praying (5 videos)						
	Harrison and the second second	Fall2013 Practice Exam 4						
		MATH154PE4F13Q4		8:32				
	and a second second	VIDEOS MATH154PE4F13Q6 Cube Moves: Disjoint Cycle Notat	ion	5:14				10
	M 1127	MATH154PE4F13Q8		2:10				
	Downey at	View full playlist (4 videos)						
								1015
	8: 000/00/00/00	3 Cube Solution						
		3cube: overview		4.14				
		VIDEOS 3cube : 8 corners		6:04				1
-		3 cube: totem poles		9:22				
		View full playlist (6 videos)						
194								
1000		Pocket Cube Solution						1

http://www.donnadietz.com/Origami.pdf

dietz@american.edu