The nonnegative integers form ... a field??

Ezra Brown Virginia Tech

MD/DC/VA Fall Section Meeting St. Mary's College of Maryland November 7, 2015

- Roughly speaking, a field is an algebraic system, such as the real numbers, where one can add, subtract, multiply, and divide (except by zero).
- Under the usual addition and multiplication of numbers, the set $N = \{0, 1, 2, ...\}$ of nonnegative integers is not a field.
- There is a way, using some unusual operations, to make N into a field.
- This talk is about it's done.

- The natural numbers $\mathbb{Z}^+ \cup \{0\}$ = $\{0,1,2,\ldots\}$
- Nimber addition
- Nimber multiplication
- \bullet The fields \mathcal{F}_2 and \mathcal{F}_4
- The field of natural nimbers

- Nimbers and nimber arithmetic originated in the world of two-player combinatorial games in particular, from the game called *nim*.
- Every position in a combinatorial game has a *Grundy number*.
- Suppose it's your turn to play.
 - If your position's Grundy number is nonzero, then there is a move that will transform the position into one with Grundy number 0, and with best play, you will win.
 - If your position's Grundy number is 0, then every move you make will transform the position into one with nonzero Grundy number, and with best play, your opponent will win.
- Grundy numbers are also called *nimbers*.

A nimber is a number with a little extra finery, You write it as a string of ones and zeros: that's in binary. To add them, line a few strings up and then perform exclusive-or. To multiply them takes some work, but hey! that's what this talk is for. Let's add the nimbers 22, 37, and 18.

Write them in binary: 22 = 16 + 4 + 2 = 010110, 37 = 32 + 4 + 1 = 100101, and 18 = 16 + 2 = 010010.

Add the strings by a string exclusive-or (XOR), written as \oplus :

010110 = 22 100101 = 37 010010 = 18 $100001 = 33 = 22 \oplus 37 \oplus 18$

Thus, $22 \oplus 37 \oplus 18 = 33$.

The *n*-bit nimbers $\{0, 1, ..., 2^n - 1\}$ form a **group** under nimber addition. Here are those groups of orders 2, 4, and 8:

÷.

									\oplus	0	1	2	3	4	5	6	7
									0	0	1	2	3	4	5	6	7
			\oplus	0	1	2	3		1	1	0	3	2	5	4	7	6
\oplus	0	1	0	0	1	2	3	-	2	2	3	0	1	6	7	4	5
0	0	1	1	1	0	3	2		3	3	2	1	0	7	6	5	4
1	1	0	2	2	3	0	1		4	4	5	6	7	0	1	2	3
			3	3	2	1	0		5	5	4	7	6	1	0	3	2
									6	6	7	4	5	2	3	0	1
									7	7	6	5	4	3	2	1	0

Notice that these groups are nested.

The additive group of nimbers of order 16

\oplus	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1	1	0	3	2	5	4	7	6	9	8	11	10	13	12	15	14
2	2	3	0	1	6	7	4	5	10	11	8	9	14	15	12	13
3	3	2	1	0	7	6	5	4	11	10	9	8	15	14	13	12
4	4	5	6	7	0	1	2	3	12	13	14	15	8	9	10	11
5	5	4	7	6	1	0	3	2	13	12	15	14	9	8	11	10
6	6	7	4	5	2	3	0	1	14	15	12	13	10	11	8	9
7	7	6	5	4	3	2	1	0	15	14	13	12	11	10	9	8
8	8	9	10	11	12	13	14	15	0	1	2	3	4	5	6	7
9	9	8	11	10	13	12	15	14	1	0	3	2	5	4	7	6
10	10	11	8	9	14	15	12	13	2	3	0	1	6	7	4	5
11	11	10	9	8	15	14	13	12	3	2	1	0	7	6	5	4
12	12	13	14	15	8	9	10	11	4	5	6	7	0	1	2	3
13	13	12	15	14	9	8	11	10	5	4	7	6	1	0	3	2
14	14	15	12	13	10	11	8	9	6	7	4	5	2	3	0	1
15	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Nimber multiplication is more complicated than nimber addition.

Let's see how it works.

The nimbers 2^{2^n} , where *n* is a nonnegative integer, are called **Fermat powers**. The first five Fermat powers are $2 = 2^{2^0}, 4 = 2^{2^1}, 16 = 2^{2^2}, 256 = 2^{2^3}$, and $65536 = 2^{2^4}$.

Denote the **nim product** by \otimes and let \cdot denote the usual integer product. If k is a nonnegative integer and $k < 2^{2^n}$, then $k \otimes 2^{2^n} = k \cdot 2^{2^n}$.

Thus, $4 \otimes 3 = 4 \cdot 3 = 12$ and $16 \otimes 13 = 16 \cdot 13 = 208$.

However, $2^{2^n} \otimes 2^{2^n} = \frac{3}{2} \cdot 2^{2^n} = 3 \cdot 2^{2^n-1}$.

Nimber multiplication: features

 $0 \otimes n = 0$ and $1 \otimes n = n$ for all nimbers *n*;

 \otimes is associative and commutative:

$$a \otimes (b \otimes c) = (a \otimes b) \otimes c$$
 and $a \otimes b = b \otimes a$;

 \otimes distributes over \oplus : $a \otimes (b \oplus c) = (a \otimes b) \oplus (a \otimes c)$; and

The Freshman's Dream: Denote $x \otimes x$ by x^2 . Then

$$(a\oplus b)^2=a^2\oplus b^2.$$

The rules for multiplying by 0 and 1 give us the partial table on the left:

As for the others:

$$2^2 = 3 \cdot 2^{2-1} = 3$$
 (by definition)
 $2 \otimes 3 = 2 \otimes (1 \oplus 2) = 2 \oplus 3 = 1$, and
 $3^2 = (1 \oplus 2)^2 = 1^2 \oplus 2^2 = 1 \oplus 3 = 2$.

The nimbers $\mathcal{F}_2 = \{0, 1\}$ are a field under the operations \oplus and \otimes :

\oplus	0	1	\otimes	0	1
0	0	1	0	0	0
1	1	0	1	0	1

This is the same as mod-2 integer arithmetic.

The nimbers $\mathcal{F}_4 = \{0, 1, 2, 3\}$ are a field under the operations \oplus and \otimes :

\oplus	0	1	2	3	\otimes	0	1	2	3
0	0	1	2	3	0	0	0	0	0
1	1	0	3	2	1	0	1	2	3
2	2	3	0	1	2	0	2	3	1
3	3	2	1	0	3	0	3	1	2

 \oplus and \otimes obey the usual laws of integer arithmetic – with two exceptions:

- Every nonzero nimber has an inverse with respect to \otimes , and
- $n \oplus n = 0$ for all nimbers n.

Now let's look at some more nimber products.

Rule of thumb: Express the factors as sums of powers of 2, use the Fermat powers when possible, and work the distributive law for all it is worth.

Example: 8 is not a Fermat power, but $8 = 2 \otimes 4$, and so:

$$8^{2} = (2 \otimes 4) \otimes (2 \otimes 4)$$

= (2 \otimes 2) \otimes (4 \otimes 4) \dots rearrange factors
= 3 \otimes 6 \dots squaring Fermat powers
= 3 \otimes (2 \otimes 4) \dots using a nim sum
= (3 \otimes 2) \otimes (3 \otimes 4) = 1 \otimes 12
= 13.

Hence, $8 \otimes 8 = 13$.

Let's try $7 \otimes 11$. Write $7 = 3 \otimes 4, 11 = 3 \oplus 8$, distribute, use previous results:

$$7 \otimes 11 = (3 \oplus 4) \otimes (3 \oplus 8)$$

= $3^2 \oplus (4 \otimes 3) \oplus (3 \otimes 8) \oplus (4 \otimes (4 \otimes 2))$
= $2 \oplus 12 \oplus ((3 \otimes 2) \otimes 4) \oplus (6 \otimes 2)$
= $2 \oplus 12 \oplus (1 \otimes 4) \oplus (2 \oplus 4) \otimes 2$
= $2 \oplus 12 \oplus 4 \oplus 3 \oplus 8$
= $1 \dots$

... and so 7 and 11 are nimber multiplicative inverses.

- For each Fermat power $FP(n) := 2^{2^n}$, this method constructs a field $\mathcal{F}_{2^{2^n}}$ of order FP(n).
- These fields are nested. That is,

$$\mathcal{F}_2 \subseteq \mathcal{F}_4 \subseteq \mathcal{F}_{16} \subseteq \ldots \subseteq \mathcal{F}_{2^{2^n}} \subseteq \ldots$$

- \bullet Their union is a field \mathcal{F}_∞ consisting of the nimbers $0,1,2,\ldots$
- ... and this is the field of natural nimbers.

THANK YOU!