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INTRODUCTION

In this talk we present a new algorithm for approximating solutions of
two-point boundary value problems and provide a theorem that gives
conditions under which it is guaranteed to succeed. We show how to
make the algorithm computationally efficient and demonstrate how
the full method works both when guaranteed to do so and more
broadly. In the first section the original idea and its application are
presented. We also show how to modify the same basic idea and
procedure in order to apply it to problems with boundary conditions
of mixed type. In the second section we introduce a new algorithm for
the case if the original algorithm failed to converge on a long interval.
We split the long interval into subintervals and show the new
algorithm gives convergence to the solution. Finally, we repose a
Volterra equation using auxiliary variables according to
Parker-Sochacki in such a way that the solution can be approximated
by the Modified Picard iteration scheme.
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The algorithm that will be developed in here for the solution of certain boundary value problems is based on a kind of Picard
iteration as just described. It is well known that in many instances Picard iteration performs poorly in actual practice, even for
relatively simple differential equations. A great improvement can sometimes be had by exploiting ideas originated by G. Parker
and J. Sochacki [7]. The Parker-Sochacki method (PSM) is an algorithm for solving systems of ordinary differential equations
(ODEs). The method produces Maclaurin series solutions to systems of differential equations, with the coefficients in either
algebraic or numerical form. The Parker-Sochacki method convert the initial value problem to a system that the right hand side
is polynomials, consequently the right hand side then are continuous and satisfy the Lipschitz condition on an open region
containing the initial point t = 0. Moreover, the system guarantees that the iterative integral is easy to integrate. We begin with
the following example, the initial value problem

y′ = siny, y(0) = π/2. (1)
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To approximate it by means of Picard iteration, from the integral equation that is equivalent to (1), namely,

y(t) = π

2 +
∫ t

0
siny(s)ds

we define the Picard iterates

y0(t)≡ π

2 , yk+1(t) =
π

2 +
∫ t

0
sinyk(s)ds for k ≥ 0.

The first few iterates are

y0(t) =
π

2

y1(t) =
π

2 + t

y2(t) =
π

2 − cos( π

2 + t)

y3(t) =
π

2 +
∫ t

0
cos(sins)ds,

the last of which cannot be expressed in closed form. We define variables u and v by u = siny and v = cosy so that y′ = u,
u′ = (cosy)y′ = uv, and v′ = (−siny)y′ =−u2 , hence the original problem is embedded as the first component in the
three-dimensional problem

y′ = u

u′ = uv

v′ =−u2

y(0) = π

2

u(0) = 1

v(0) = 0

Although the dimension has increased, now the right hand sides are all polynomial functions so quadratures can be done easily.
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In particular, the Picard iterates are now

y0(t) =

 π

2
1
0

 yk+1(t) = y0 +
∫ t

0
yk(s)ds =

 π

2
1
0

+
∫ t

0

 uk(s)
uk(s)vk(s)
−u2

k (s)

 ds.

The first component of the first few iterates are

y0(t) =
π

2

y1(t) =
π

2 + t

y2(t) =
π

2 + t

y3(t) =
π

2 + t− 1
6 t3

y4(t) =
π

2 + t− 1
6 t3 + 1

24 t5

y5(t) =
π

2 + t− 1
6 t3 + 1

24 t5

y6(t) =
π

2 + t− 1
6 t3 + 1

24 t5− 61
5040 t7

The exact solution to the problem (1) is
y(t) = 2arctan(et)

the first nine terms of its Maclaurin series are

π

2 + t− 1
6 t3 + 1

24 t5− 61
5040 t7 +O(t9)

As we can see the system of ODE proposed by Parker and Sochacki is generating a Maclaurin series solution for problem (1).
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AN EFFICIENT ALGORITHM FOR APPROXIMATING

SOLUTIONS OF TWO-POINT BOUNDARY VALUE

PROBLEMS

Consider a two-point boundary value problem of the form

y′′ = f (t,y,y′), y(a) = α, y(b) = β . (2)

If f is locally Lipschitz in the last two variables then by the Picard-Lindelöf Theorem, for any γ ∈ R the initial value problem

y′′ = f (t,y,y′), y(a) = α, y′(a) = γ (3)

will have a unique solution on some interval about t = a. Introducing the variable u = y′ we obtain the first order system that is
equivalent to (3),

y′ = u

u′ = f (t,y,u)

y(a) = α, u(a) = γ

(4)
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The equivalent integral equation to (3) will be

y(t) = α+ γ(t−a)+
∫ t

a
(t− s)f (s,y(s),y′(s))ds, (5)

which we then solve, when evaluated at t = b, for γ:

γ = 1
b−a

(
β−α−

∫ b

a
(b− s)f (s,y(s),y′(s))ds

)
(6)

The key idea is we use picard iteration to obtain successive approximations to the value of γ. Thus the iterates are

y[0](t)≡ α

u[0](t)≡ β−α

b−a

γ
[0] ≡ β−α

b−a

(7a)

and

y[k+1](t) = α+
∫ t

a
u[k](s)ds

u[k+1](t) = γ
[k]+

∫ t

a
f (s,y[k](s),u[k](s))ds

γ
[k+1] =

1
b−a

(
β−α−

∫ b

a
(b− s)f (s,y[k](s),u[k](s))ds

)
.

(7b)



Introduction Algorithms and Theorems for approximating solutions of two-point boundary value problems An Algorithm for Approximating Solutions On the Long Intervals Volterra Equation Using Auxiliary Variables According To Parker-Sochacki

THEOREM

Theorem
Let f : [a,b]×R2→ R : (t,y,u) 7→ f (t,y,u) be Lipschitz in y = (y,u)
with Lipschitz constant L with respect to absolute value on R and the
sum norm on R2. If 0 < b−a < (1+ 3

2 L)−1 then for any α, β ∈ R the
boundary value problem

y′′ = f (t,y,y′), y(a) = α, y(b) = β (8)

has a unique solution.
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EXAMPLES

In this example we treat a problem in which the function f on the right
hand side fails to be Lipschitz yet Algorithm nevertheless performs
well. Consider the boundary value problem

y′′ =−e−2y, y(0) = 0, y(1.2) = lncos1.2≈−1.015123283, (9)

for which the unique solution is y(t) = lncos t, yielding γ = 0.
Introducing the dependent variable u = y′ to obtain the equivalent first order system y′ = u, u′ =−e−2y and the variable
v = e−2y to replace the transcendental function with a polynomial we obtain the expanded system

y′ = u

u′ =−v

v′ =−2uv
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y[0](t)≡ 0

u[0](t)≡ lncos1.2
1.2

v[0](t)≡ 1

γ
[0] =

lncos1.2
1.2

(10)

and y[k+1](t)
u[k+1](t)
v[k+1](t)

=

 0
1

1.2 (β−α+
∫ 1.2

0 (1.2− s)v[k](s)ds
1

 (11)

+
∫ t

0

 u[k](s)
−v[k](s)

−2u[k](s)v[k](s)

 ds,

where we have shifted the update of γ and incorporated it into the update of u[k](t). The first eight iterates of γ are:

γ
[1] =−0.24594, γ

[2] = 0.16011, γ
[3] = 0.19297, γ

[4] = 0.04165,

γ
[5] =−0.04272, γ

[6] =−0.04012, γ
[7] =−0.00923, γ

[8] = 0.01030,

The maximum error in the approximation is |yexact − y[8]|sup ≈ 0.0065.
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EXAMPLE

In this example the right hand side is not autonomous and does not
satisfy a global Lipschitz condition. Consider the boundary value problem

y′′ =
1
8

(
32+2t3− yy′

)
, y(1) = 17, y(3) =

43
3

(12)

The unique solution is y(t) = t3 + 16
t . We have

y[0](t)≡ 17

u[0](t)≡− 4
3

γ
[0] =− 4

3

(13a)

and (
y[k+1](t)
u[k+1](t)

)
=

(
17
γ[k]

)
+

∫ t

1

(
u[k](s)

4+ 1
4 s3− y[k](s)u[k](s)

)
ds,

γ
[k+1] =− 4

3
− 1

2

∫ 3

1
(3− s)(4+

1
4

s3− y[k](s)u[k](s))ds.

(13b)

After n = 12 iterations, γ[12] =−8.443, whereas the exact value is γ =− 76
9 ≈−8.444. As illustrated by the error plot, see the

Figure in the next slide for the maximum error in the twelfth approximating function is |yexact − y[12]|sup ≈ 0.0012.
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MIXED TYPE BOUNDARY CONDITIONS

The ideas developed at the beginning can also be applied to two-point boundary value problems of the form

y′′ = f (t,y,y′), y′(a) = γ, y(b) = β , (14)

so that in equation (3) the constant γ is now known and α = y(a) is unknown. Thus in (5) we evaluate at t = b but now solve for
α instead of γ, obtaining in place of (6) the expression

α = β− γ(b−a)−
∫ b

a
(b− s)f (s,y(s),y′(s))ds.

In the Picard iteration scheme we now successively update an approximation of α starting with some initial value α0 . The
iterates are

y[0](t)≡ α0

u[0](t)≡ γ

α
[0] = α0

(15a)

and

y[k+1](t) = α
[k]+

∫ t

a
u[k](s)ds

u[k+1](t) = γ+
∫ t

a
f (s,y[k](s),u[k](s))ds

α
[k+1] = β− γ(b−a)−

∫ b

a
(b− s)f (s,y[k](s),u[k](s))ds.

(15b)
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Consider the boundary value problem

y′′ =−y′e−y, y′(0) = 1, y(1) = ln2 (16)

The exact solution is y(t) = ln(1+ t), for which y(0) = ln1 = 0. Introducing the dependent variable u = y′ as always to obtain
the equivalent first order system y′ = u, u′ =−ue−y and the variable v = e−y to replace the transcendental function with a
polynomial we obtain the expanded system

y′ = u

u′ =−uv

v′ =−uv

with initial conditions
y(0) = α, u(0) = γ, v(0) = e−α,

so that, making the initial choice α0 = 1
y[0](t)≡ α0

u[0](t)≡ 1

v[0](t)≡ e−α0

(17)

and
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y[k+1](t)
u[k+1](t)
v[k+1](t)

=

ln2−1+
∫ 1

0 (1− s)u[k](s)v[k](s)ds
1

e−α0

 (18)

+
∫ t

0

 u[k](s)
−u[k](s)v[k](s)
−u[k](s)v[k](s)

 ds,

where we have shifted the update of α and incorporated it into the update of y[k](t). We list the first eight values of α[k] to show
the rate of convergence to the exact value α = 0.

α
[1] =−0.00774, α

[2] = 0.11814, α
[3] = 0.07415, α

[4] = 0.08549,

α
[5] = 0.08288, α

[6] = 0.08339, α
[7] = 0.08330, α

[8] = 0.08331
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MIXED TYPE BOUNDARY CONDITIONS: A SECOND

APPROACH

In actual applications the Algorithm converges relatively slowly
because of the update at every step of the estimate of the initial value
y(a) rather than of the initial slope y′(a). A different approach that
works better in practice with a problem of the type

y′′ = f (t,y,y′), y′(a) = γ, y(b) = β , (19)

is to use the relation

y′(b) = y′(a)+
∫ b

a
f (s,y(s),y′(s))ds (20)

between the derivatives at the endpoints to work from the right endpoint of the interval [a,b], at which the value of the solution y
is known but the derivative y′ unknown. That is, assuming that (19) has a unique solution and letting the value of its derivative
at t = b be denoted δ, it is also the unique solution of the initial value problem

y′′ = f (t,y,y′), y(b) = β, y′(b) = δ . (21)
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We introduce the new dependent variable u = y′ to obtain the equivalent system

y′ = u

u′ = f (t,y,u)

with initial conditions y(b) = β and y′(b) = δ and apply Picard iteration based at t = b, using (20) with y′(a) = γ to update the
approximation of y′(b) are each step. Choosing a convenient initial estimate δ0 of δ, the successive approximations of the
solution of (21), hence of (19), are given by

y[0](t)≡ β

u[0](t)≡ δ0

δ
[0] = δ0

(22a)

and

y[k+1](t) = β+
∫ t

b
u[k](s)ds

u[k+1](t) = δ
[k]+

∫ t

b
f (s,y[k](s),u[k](s))ds

δ
[k+1] = γ+

∫ b

a
f (s,y[k](s),u[k](s))ds.

(22b)
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EXAMPLE

Reconsider the boundary value problem

y′′ =−y′e−y, y′(0) = 1, y(1) = ln2 (23)

with exact solution y(t) = ln(1+ t). The relation (20) is

y′(1) = 1−
∫ 1

0
y′(s)e−y(s) ds. (24)

We set u = y′ and v = e−y to obtain the expanded system

y′ = u

u′ =−uv

v′ =−uv

Since, our standard way is to have initial condition at t = 0. Therefore we use change of variable τ = 1− t and Example becomes

y′′ = y′e−y , y(0) = ln2, y′(1) =−1 (25)

with exact solution y(t) = ln(τ−2). The relation (20) is

y′(1) =−1+
∫ 1

0
y′(s)e−y(s) ds. (26)
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We set u = y′ and v = e−y to obtain the expanded system

y′ = u

u′ = uv

v′ =−uv

y[0](t)≡ ln2

u[0](t)≡−1

v[0](t)≡ 1
2

δ
[0] ≡−11

(27a)

and y[k+1](t)
u[k+1](t)
v[k+1](t)

=

ln2
δ[k]

1
2

+
∫ t

0

 u[k](s)
u[k](s)v[k](s)
−u[k](s)v[k](s)

 ds,

δ
[k+1] =−1+

∫ 1

0
u[k](s)v[k](s)ds.

(27b)

The exact value of δ = y′(1) is 1
2 . The first eight values of δ[k] are:

δ
[0] =−0.50000, δ

[1] = 0.41667, δ
[2] = 0.50074, δ

[3] = 0.51592,

δ
[4] = 0.49987, δ

[5] = 0.49690, δ
[6] = 0.50003, δ

[7] = 0.50060, δ
[8] = 0.50000
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LONG INTERVALS

Consider the following Boundary Value Ordinary Differential
Equation,

w′′(t) = f (t,w(t),w′(t)), a≤ t ≤ b
w(a) = α, w(b) = β

(28)

Here we introduce a new algorithm for the case if the original
algorithm failed to converge on a long interval. We split the long
interval into subintervals and show the new algorithm gives
convergence to the solution. For simplicity we divided interval [a,b]
into three subintervals [a, t1], [t1, t2] and [t2,b]. Where
t0 = a < t1 < t2 < t3 = b. Where h = ti− ti−1 for 1≤ i≤ 3
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We would like to show that the boundary value problem (28) on the long interval has a unique solution if the following Initial
value problems can simultaneously generate recursively a convergence sequence of y(t) restricted to each subintervals.

w′′1 (t) = f (t,w1(t),w′1(t)), a≤ t ≤ t1
w1(a) = α, w′1(a) = γ1

(29)

w′′2 (t) = f (t,w2(t),w′2(t)), t1 ≤ t ≤ t2
w2(t1) = β1, w′2(t1) = γ2

(30)

and

w′′3 (t) = f (t,w3(t),w′3(t)), t2 ≤ t ≤ b
w3(t2) = β2 , w′3(t2) = γ3

(31)

We convert interval [ti−1 , ti ] to [0,h] by τ = t− ti−1 . This transformation can help us to simplify the proof. Hence (29) becomes

y′′1 (τ) = f1(τ,y1(τ),y′1(τ)), 0≤ τ≤ h
y1(0) = α, y′1(0) = γ1

(32)

(30) becomes
y′′2 (τ) = f2(τ,y2(τ),y′2(τ)), 0≤ τ≤ h

y2(0) = β1 , y′2(0) = γ2
(33)

and (31) becomes

y′′3 (τ) = f3(τ,y3(τ),y′3(τ)), 0≤ τ≤ h
y3(0) = β2 , y′3(0) = γ3

(34)
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The initial conditions for each of the equations (32), (33) and (34) will be obtained so that the following conditions are satisfied

y1(h;β1 ,γ1) = y2(0;β1;γ2) Continuity Condition
y2(h;β2 ,γ2) = y3(0;β2;γ3) Continuity Condition
y′1(h;β1 ,γ1) = y′2(0;β1;γ2) Smoothness Condition
y′2(h;β2 ,γ2) = y′3(0;β2;γ3) Smoothness Condition
y3(h;β2;γ3) = β

(35)

These conditions will be satisfied automatically inside of the algorithm.
The recursion initialization becomes

y[0]1 (τ)≡ α

u[0]1 (τ)≡ β−α

b−a

γ
[0]
1 ≡ u[0]1

β
[0]
1 ≡ u[0]1 h+α

u[0]2 (τ)≡ γ
[0]
1

u[0]3 (τ)≡ γ
[0]
1

(36)
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(
y[k+1]

1 (τ)

u[k+1]
1 (τ)

)
=

(
α

γ
[k]
1

)
+

∫
τ

0

(
u[k]1 (s)

f1(s,y
[k+1]
1 (s),u[k]1 (s))

)
ds (37a)

φ
[k]
1 ≡ y[k+1]

1 (h), γ
[k]
2 ≡ u[k+1]

1 (h) (37b)(
y[k+1]

2 (τ)

u[k+1]
2 (τ)

)
=

(
φ
[k]
1

γ
[k]
2

)
+

∫
τ

0

(
u[k]2 (s)

f2(s,y
[k+1]
2 (s),u[k]2 (s))

)
ds (37c)

φ
[k]
2 ≡ y[k+1]

2 (h), γ
[k]
3 ≡ u[k+1]

2 (h) (37d)(
y[k+1]

3 (τ)

u[k+1]
3 (τ)

)
=

(
φ
[k]
2

γ
[k]
3

)
+

∫
τ

0

(
u[k]3 (s)

f3(s,y
[k+1]
3 (s),u[k]3 (s))

)
ds (37e)

β
[k]
2 = β− γ

[k]
3 h−

∫ h

0
(h− s)f3(s,y

[k+1]
3 (s),u[k+1]

3 (s))ds

β
[k+1]
1 = β

[k]
2 − γ

[k]
2 h−

∫ h

0
(h− s)f2(s,y

[k+1]
2 (s),u[k+1]

2 (s))ds

γ
[k+1]
1 = 1

h

[
β1−α−

∫ h

0
(h− s)f1(s,y

[k+1]
1 (s),u[k+1]

1 (s))ds
]
.

(37f)



Introduction Algorithms and Theorems for approximating solutions of two-point boundary value problems An Algorithm for Approximating Solutions On the Long Intervals Volterra Equation Using Auxiliary Variables According To Parker-Sochacki

Example
Consider the boundary value problem, we

y′′ = 2y3 , y(0) =− 1
4
, y(2) = β (38)

Our goal is to divide a long intervals into n subintervals, with relatively small length, that satisfies our original Theorem. We
divided the interval into three subintervals [0, 5

4 ]∪ [
5
4 ,

7
4 ]∪ [

7
4 ,2]. For n = 18.

The exact value of γ =−0.0625. The first 10 values of γ[k] are:

γ
[1] =−0.12500, γ

[2] =−0.10156, γ
[3] =−0.06154, γ

[4] =−0.04716, γ
[5] =−0.06917,

γ
[6] =−0.06903, γ

[7] =−0.05852, γ
[8] =−0.05948, γ

[9] =−0.06515, γ
[10] =−0.06366,
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VOLTERRA INTEGRAL

A Volterra equation of the second kind is an equation of the form

y(t) = ϕ(t)+
∫ t

0
K(t,s)f (s,y(s))ds (39)

where ϕ, K, and f are known functions of suitable regularity and y is
an unknown function. Such equations lend themselves to solution by
successive approximation using Picard iteration, although in the case
that the known functions are not polynomials the process can break
down when quadratures that cannot be performed in closed form
arise. If the “kernel“ K is independent of the first variable t then the
integral equation is equivalent to an initial value problem. Indeed, in
precisely the reverse of the process.
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We have that
y(t) = ϕ(t)+

∫ t

0
k(s)f (s,y(s))ds

is equivalent to

y′(t) = ϕ
′(t)+ k(t)f (t,y(t)), y(0) = ϕ(0).

In this chapter we provide a method for introducing auxiliary
variables in (39), in the case that K factors as K(t,s) = j(t)k(s), in
such a way that it embeds in a vector-valued polynomial Volterra
equation, thus extending the Parker-Sochacki method to this setting
and thereby obtaining a computationally efficient method for closely
approximating solutions of (39).
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EXAMPLE (VIE)

Linear

Consider the following second kind linear volterra integral.

y(t) = exp(t)sin(t)+
∫ t

0

2+ cos(t)
2+ cos(s)

y(s)ds (40)



φ(t) = exp(t)sin(t)

k(t,s) = 2+cos(t)
2+cos(s)

f (t,y(t)) = y(t)

(41)

The exact solution is
y(t) = exp(t)sin(t)+ exp(t)

(
2+ cos(t)

)(
ln(3)− ln

(
2+ cos(t)

))
(42)
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EXAMPLE

{
y(t) = exp(t)sin(t)+(2+ cos(t))

∫ t
0

1
2+cos(s) y(s)ds

y(0) = exp(0)sin(0) = 0
(43)

We define the following variables
v1 = exp(t), v1(0) = 1

v2 = cos(t), v2(0) = 1

v3 = sin(t), v3(0) = 0

v4 = 2+ v2, v4(0) = 3

v5 =
1
v4

, v5(0) =
1
3

(44)

I v′1 = v1

I v′2 =−v3

I v′3 = v2

I v′4 = v′2 =−v3

I v′5 =
−v′4
v2
4

= v3v2
5
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EXAMPLE

I v1(t) = v1(0)+
∫ t

0 v1(s)ds

I v2(t) = v2(0)−
∫ t

0 v3(s)ds

I v3(t) = v3(0)+
∫ t

0 v2(s)ds

I v4(t) = v4(0)−
∫ t

0 v3(s)ds

I v5(t) = v5(0)+
∫ t

0 v3(s)v2
5ds

I y[1] = 0 = α

I v[1]1 = exp(0) = 1

I v[1]2 = cos(0) = 1

I v[1]3 = sin(0) = 0

I v[1]4 = 2+ v[1]2 = 3

I v[1]5 = 1
3
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EXAMPLE VIE
Thus the iterates are
I y[k+1] = q[k]1 v[k]3 + v[k]4

∫ t
0 v[k]5 y[k]ds

I v[k+1]
1 = 1+

∫ t
0 v[k]1 ds

I v[k+1]
2 = 1−

∫ t
0 v[k]3 ds

I v[k+1]
3 =

∫ t
0 v[k]2 ds

I v[k+1]
4 = 3−

∫ t
0 v[k]3 ds

I v[k+1]
5 = 1

3 +
∫ t

0 v[k]3 (v[k]5 )2ds

The approximation of solution for the first 4 iterations
y[2] = 0

y[3] = t2 + t

y[4] =− 1
180

t7− 1
144

t6−1/45 t5−1/24 t4 +5/6 t3 +3/2 t2 + t

y[5] =
1

9797760
t16 +

1
7278336

t15 +
59

29393280
t14 +

41
13343616

t13

− 1
87480

t12− 1
42768

t11− 1
2880

t10− 1
1512

t9− 1
480

t8− 1
336

t7

− 49
1080

t6−1/8 t5 +1/6 t4 +5/6 t3 +3/2 t2 + t

(45)
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EXAMPLE VIE

For n = 5

yapprox = y[n+1], Exact = y(t)
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EXAMPLE VIE

By increasing n tto n = 7

yapprox = y[n+1], Exact = y(t)
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EXAMPLE VIE
Non-Linear

Biazar on his paper [11] has introduced the following second
kind non-linear volterra integral.



φ(t) = 1/2sin(2t)

k(t,s) = cos(s− t)

f (t,y) = y2

(46)

THE EXACT SOLUTION IS
y(t) = sin(t) (47)

To solve this non-linear Volterra integral we set up the integral


y(t) = 1
2 sin(2t)+ 3

2
∫ t

0 cos(s− t)y2(s)ds

y(0) = 1
2 sin(2(0)) = 0

(48)
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EXAMPLE VIE

For n = 5

Error = |y[n+1]− y(t)|
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EXAMPLE VIE

By increasing n to n = 7 we have

yapprox = y[n+1], Exact = y(t)



Introduction Algorithms and Theorems for approximating solutions of two-point boundary value problems An Algorithm for Approximating Solutions On the Long Intervals Volterra Equation Using Auxiliary Variables According To Parker-Sochacki

THANK YOU

Thank you
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