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Some Historic Background

Theorem. (Hurwitz, 1893) Let X be a curve of genus g ≥ 2 over
a field of characteristic 0. Then |Aut(X )| ≤ 84(g − 1).

Idea of proof. (See p. 305 of [3]) Let G := Aut(X ) have order n.
Then the action of G on the function field K (X ) gives rise a finite
morphism of curves f : X → Y of degree n. Then Hurwitz’s
theorem implies that

(2g − 2)/n = 2g(Y )− 2 +
s∑

i=1

(1− 1/ri ),

where ri ’s are the ramification indices corresponding to the
ramification points of X lying over distinct points of Y .
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Hurwitz’s Bound Continued

Since g ≥ 2, the left hand side is > 0. Under the constraints
g(Y ) ≥ 0, s ≥ 0, ri ≥ 2, i = 1, · · · , s are integers, we see that the
right hand side reaches a minimum if we take g(Y ) = 0, s = 3,
and ri ’s the integers 2, 3 and 7, namely

2g(Y )−2+
s∑

i=1

(1−1/ri ) = −2+(1−1/2)+(1−1/3)+(1−1/7) = 1/42.

This shows that

(2g − 2)/n ≥ 1/42⇒ n ≤ 84(g − 1).

QED
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The Klein Quartic

Theorem. (Klein, 1879) Assume char k ̸= 3. If X is the curve
given by

x3y + y3z + z3x = 0,

the group Aut X is the simple group of order 168, whose order is
the maximum 84(g − 1) allowed by curves of genus 3.

Note. This is the main focus of today’s talk, but we will need
other tools.
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Sylow’s Theorem

Theorem. (Sylow, 1872) Let G be a finite group of order prm
with r ≥ 1 and p - m. Then there exists at least one subgroup P of
order pr (called a p-Sylow subgroup of G ). More precisely, one has

(a) The number n of p-Sylow subgroups satisfies n|m and
n ≡ 1 (mod p).
(b) All the p-Sylow subgroups are conjugate.
(c) Any p-group in G is contained in a p-Sylow subgroup.
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Projective Plane and the Klein Quartic Curve

Definition. The projective plane P2 over C is defined as follows:

P2 = {[x0 : x1 : x2]|x0, x1 and x2 ∈ C, not all zero}/ ∼,

where the equivalence ∼ is taken by identifying [x0 : x1 : x2] and
[y0 : y1 : y2] if there exists a nonzero λ ∈ C such that
yi = λxi , i = 0, 1, and 2.

The Klein quartic curve X in P2 is the curve given by the following
equation:

x30x1 + x31x2 + x32x0 = 0.
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Automorphism of order 7, 3 and 2

Let ζ = e
2πi
7 be a primitive 7-th root of unity. It is easy to see that

the mapping

S : [t0 : t1 : t2] 7→ [ζt0 : ζ
2t1 : ζ

4t2]

defines an automorphism of order 7. Also there is an obvious
automorphism of order 3 (the cyclic permutation of coordinates)

U : [t0 : t1 : t2] 7→ [t1 : t2 : t0].

It is easy to check that ([t0 : t1 : t2] considered as row vector)

USU−1 = S4, (1)

so that the subgroup generated by S and U is a semi-direct
product of order 21.
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Automorphism of order 7, 3 and 2 - Continued

Now the following automorphism represented in matrix is not so
easy to find, but it can be checked that it is indeed one and it has
order 2:

T :=
i√
7

 ζ − ζ6 ζ2 − ζ5 ζ4 − ζ3

ζ2 − ζ5 ζ4 − ζ3 ζ − ζ6

ζ4 − ζ3 ζ − ζ6 ζ2 − ζ5

 . (2)

It is readily checked that T has order 2 and satisfies

TUT−1 = U2, (3)

so that the group generated by U and T is the dihedral group of
order 6.
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The Size of Automorphism Group of the Klein Quartic

One checks that the 49 elements SaTSb (0 ≤ a, b ≤ 6) are all
distinct. In particular, this shows that the cyclic subgroup
generated by S is not normal in the group G generated by S ,T
and U (otherwise TST ∈< S > so TS = S iT for some i , and
hence all the elements SaTSb can be written as S jT for some j , a
contradiction). Since the order of the group G is divisible by
2 · 3 · 7 = 42, we see that |G | = 42, 84, 126 or 168. If follows from
Sylow’s theorem that the group < S > must be normal in the first
three cases, so |G | = 168, and by Hurwitz’s Theorem,
Aut(X ) = G =< S ,T ,U > . (See p. 273 of [1].)
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Simplicity of G

Theorem. The group Aut(X ) is a simple group of order 168.
Proof. (Dolgachev) Suppose H is a nontrivial normal subgroup of
G . Assume that its order is divisible by 7. Since its Sylow
7-subgroup cannot be normal in H (in G?), we see that H contains
all Sylow 7-subgroups of G . By Sylow’s Theorem, their number is
equal to 8. This shows that |H| = 56 or 84. In the first case, H
contains a Sylow 2-subgroup of order 8. Since H is normal, all its
conjugates are in H, and in particular, T ∈ H. The quotient group
G/H is of order 3. It follows from (3) that the coset of U must be
trivial. Since 3 does not divide 56, we get a contradiction.
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Simplicity of G - Continued

In the second case, H contains S ,T ,U (why?) and hence
coincides with G . So, we have shown that H cannot contain an
element of order 7. Suppose it contains an element of order 3.
Since all such elements are conjugate, H contains U. If follows
from (1) that the coset of S in G/H is trivial, hence S ∈ H,
contradicting the assumption. It remains to consider the case when
H is a 2-subgroup. Then |G/H| = 2a · 3 · 7, with a ≤ 2. It follows
from Sylow’s Theorem that the image of the Sylow 7-subgroup in
G/H is normal. Thus its preimage in G is normal. This
contradiction finishes the proof that G is simple. QED
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The Reason Why in the Previous Slide

In addressing the obscurity of the argument in the previous slide, I
came across an assertion by H. Coxeter in his book “The Beauty of
Geometry” when I was reading the materials regarding Cayley
numbers, i.e. the octonions (See p. 23 of [2]). It was mentioned
that there is a symmetry group of the Fano plane which has size
equal to 168, and it can be described by the subgroup in S7
generated by the cycles (12)(36) and (1234567). Immediately I
double checked it by putting it in Sage: the pleasant result I got is
that the size of the group is 168. It made me wonder whether
these two groups are isomorphic to each other. So I hastened to
construct an explicit isomorphism (not the one by generators and
relations which would make sense only to the experts) between the
two groups. I managed to do that by Divide and Conquer. The
result was then used to justify Professor Dolgachev’s argument.

Cherng-tiao Perng Some Observations on Klein Quartic, Groups, and Geometry



Outline
Introduction

Automorphism Group Aut(X ) of the Klein Quartic X
Aut(X ) is a simple group of order 168

A motivating way to derive the order 2 transformation T
(1)

• Here is the starting scenario: Suppose we do not know the
complicated transformation T of order 2 in formula (2). But we
know S ,U, and assume that G =< S ,T ,U > is isomorphic to
A =< (1, 2)(3, 6), (1, 2, 3, 4, 5, 6, 7) > . Is there a way to solve for
T explicitly? We describe below a motivating way to derive T .

• Taking clue from the behavior of order 2 element in A, we are led
to the assumption that TU = U2T . Since the transformation
comes from geometry, it is natural to assume that T can be
represented by a unitary matrix, namely TT ∗ = I , where T ∗ is the
conjugate transpose of T . Coupled with the order 2 requirement,
we see immediately that T = T ∗.
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A motivating way to derive the order 2 transformation T
(2)

• Namely, we may write the unitary matrix T as

T =

 a d e
d̄ b f
ē f̄ c

 , where a, b, and c are real.

• Given that U =

 0 0 1
1 0 0
0 1 0

, we get that TU =

 d e a
b f d̄
f̄ c ē


and U2T =

 d̄ b f
ē f̄ c
a d e

 .
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A motivating way to derive the order 2 transformation T
(3)

• By requiring TU = U2T and using the assumption that T is
unitary, we see that T is of the form

T =

 a c b
c b a
b a c

 ,

where all entries are real, hence T is an orthogonal matrix.

• The previous statement is equivalent to saying that
a2 + b2 + c2 = 1 and ab + bc + ca = 0, where a, b and c are real.
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A motivating way to derive the order 2 transformation T
(4)

• With ζ = e
2πi
7 , it is well-known that 1, ζ, ζ2, · · · , ζ6 divide the

unit circle into 7 equal parts, and that

1 + ζ + ζ2 + · · ·+ ζ6 = 0.

• For solving a, b and c from the previous slide, we first try
a = ζ− ζ6, b = ζ2− ζ5 and c = ζ3− ζ4 (these are purely imaginary
but we may rescale later). They satisfy a2 + b2 + c2 = −7. Hence
by rescaling a factor of i√

7
, we can ensure that a2 + b2 + c2 = 1.

• Furthermore by adjusting the sign of c , we ensure the equality
ab + bc + ca = 0.
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A motivating way to derive the order 2 transformation T
(5)

• Thus we have found an order 2 transformation in the following
form

T ′ =
i√
7

 ζ − ζ6 ζ4 − ζ3 ζ2 − ζ5

ζ4 − ζ3 ζ2 − ζ5 ζ − ζ6

ζ2 − ζ5 ζ − ζ6 ζ4 − ζ3

 .

• By the above construction, any permutation of a, b and c would
also yield an order 2 transformation such as

T =
i√
7

 ζ − ζ6 ζ2 − ζ5 ζ4 − ζ3

ζ2 − ζ5 ζ4 − ζ3 ζ − ζ6

ζ4 − ζ3 ζ − ζ6 ζ2 − ζ5

 .

• We note that Professor Dolgachev’s formula for T is a mirror
reflection of the matrix T ′ above. But it should be a typo, because
it does not satisfy the condition T 2 = I .
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Summary

• The unity of mathematics: the eight squares theorem ↔
factorization theory of octonions ← Symmetry group of the Fano
plane P2(F2) ↔ PSL(3, 2) ↔ Aut(X )

• Computer algebra system (such as SAGE) as a useful tool for
conducting research and/or for engaging students.

• A motivating way for deriving an element of order 2 in Aut(X ).
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