Multipliers of difference sets and how to find them

Ezra Brown Virginia Tech

MD/DC/VA Fall Section Meeting Bowie State University November 8, 2014

- Difference sets
- Multipliers
- Orbits
- Finding difference sets using multipliers

A (v, k, λ) difference set is a k-element subset D of $V = \mathbb{Z} \mod v$ such that every nonzero element of V can be expressed as a difference a - b of elements $a, b \in D$ in exactly λ ways. Here are a couple of examples.

The (7, 3, 1) difference set

Let
$$D = \{1, 2, 4\}$$
, a 3-element set $(k = 3)$.

Look at the differences of elements of $D \mod 7$ (v = 7):

$2-1 \equiv 1$	$1-4 \equiv 4$
$4-2 \equiv 2$	$2-4\equiv {f 5}$
$4-1 \equiv 3$	$1-2\equiv 6$

The numbers $\{1, 2, 3, 4, 5, 6\}$ are each expressible as a difference of elements of *D* in exactly 1 way ($\lambda = 1$).

Hence, $D = \{1, 2, 4\}$ is a $(v, k, \lambda) = (7, 3, 1)$ difference set.

Look at the differences of elements of $D\{1, 3, 4, 5, 9\} \mod 11$:

The numbers $\{1, 2, ..., 10\}$ are each expressible as a difference of elements of D in exactly 2 ways.

Hence, $D = \{1, 3, 4, 5, 9\}$ is a $(v, k, \lambda) = (11, 5, 2)$ difference set.

Let D be a (v, k, λ) difference set. Then

- D contains k elements, so there are k(k-1) pairs of distinct elements of D.
- The k(k-1) nonzero differences between pairs of elements of D mod v account for λ copies of the v 1 nonzero integers mod v.

• Hence,
$$k(k-1) = \lambda(v-1)$$
.

This is a necessary condition on the parameters for the existence of a (v, k, λ) difference set. We need a sufficient condition that's easy to check.

That's where multipliers come in.

Let $D = \{x_1, \ldots, x_k\}$ be a difference set. A *multiplier* of D is an integer m such that $\{mx_i \pmod{v} : i = 1, \ldots, k\}$ is equal to a translation $D + r \pmod{v}$ for some integer r.

Example: $D = \{2, 3, 5\}$ is a (7, 3, 1) difference set, and

$$2D \mod 7 = D + 1 \mod 7 = \{3, 4, 6\}.$$

How does this help?

The Multiplier Theorem

Let D be a (v, k, λ) difference set, and let p be a prime such that $(p, v) = 1, p > \lambda$, and $p|(k - \lambda)$. Then

- p is a multiplier of D, and
- There exists j such that $p \cdot (D+j) \equiv D+j \mod v$.

More generally, if there is a (v, k, λ) -difference set D with a multiplier m, then there is a difference set D' on these parameters such that $D' \equiv mD' \mod v$.

Examples:

(1) It turns out that 2 is a multiplier for the (7,3,1) difference set $D = \{1, 2, 4\}$, and $2D \equiv D \mod 7$.

(2) Similarly, multiplication by 3 fixes the (11,5,2) difference set $D = \{1, 3, 4, 5, 9\}.$

Now, by the Multiplier Theorem, if there is a (21, 5, 1) difference set D, then 2 is a multiplier of D. How do we find D? A *permutation* on a set S is a 1-1 mapping of the set onto itself.

For example, let $S = \{1, 2, 3, 4, 5\}$, and define π by $\pi(1) = 3$, $\pi(2) = 5$, $\pi(3) = 4$, $\pi(4) = 1$, $\pi(5) = 2$.

If f is a permutation on S, and $x \in S$, then the orbit of f containing x is the set of iterated images $\{x, f(x), f(f(x)), \ldots\}$

Thus, the orbits of π are $\{1, 3, 4\}$ and $\{2, 5\}$.

- The orbits of $x \mapsto 2x \mod 7$ on \mathbb{Z}_7 are $\{0\}, \{1, 2, 4\}, \text{ and } \{3, 6, 5\}.$
- $\{1, 2, 4\}$ is a (7, 3, 1) difference set fixed by this map.
- Isn't that interesting?
- The orbits of $x \mapsto 3x \mod 11$ on \mathbb{Z}_{11} are $\{0\}, \{1, 3, 9, 5, 4\}$, and $\{2, 6, 7, 10, 8\}$ and $\{1, 3, 9, 5, 4\}$ is an (11, 5, 2) difference set fixed by the given mapping.
- Isn't *that* interesting?

FACT 1: If (m, v) = 1, then the mapping $m \mapsto 2m \mod v$ is a permutation on \mathbb{Z}_v .

FACT 2: If *m* is a multiplier of a (v, k, λ) difference set *D*, then some translation of *D* is fixed by $m \mapsto 2m \mod v$. Therefore:

FACT 3: If a (v, k, λ) difference set D is fixed by a multiplier m, then D is a union of orbits of the map $m \mapsto 2m \mod v$. So:

WILD IDEA: If v, k, and λ satisfy the relation $k(k-1) = \lambda(v-1)$, and p satisfies the conditions in the Multiplier Theorem, then the set of orbits of $x \mapsto px \mod v$ just *might* contain a (v, k, λ) difference set.

ACTION PLAN: Look through such orbits and find some of them whose union (a) contains k elements and (b) produces a (v, k, λ) difference set.

The Multiplier Theorem tells us that if D is a (21, 5, 1) difference set, then 2 is a multiplier of D — and so it fixes a translate of D.

The orbits of $x \mapsto 2x \mod 21$ are $\{0\}$, $\{1, 2, 4, 8, 16, 11\}$, $\{3, 6, 12\}$, $\{5, 10, 20, 19, 17, 13\}$, $\{7, 14\}$, and $\{9, 18, 15\}$. We find that

 $\{3, 6, 7, 12, 14\} = \{3, 6, 12\} \cup \{7, 14\}$ is indeed a (21, 5, 1) difference set.

The orbits of $x \mapsto 2x \mod 15$ are $\{0\}$, $\{1, 2, 4, 8\}$, $\{3, 6, 12, 9\}$, $\{5, 10\}$, and $\{7, 14, 13, 11\}$; — and $\{0, 1, 2, 4, 8, 5, 10\}$ is a (15, 7, 3) difference set.

Using this method led to the discovery of these difference sets:

 $\{1, 5, 25, 17, 22, 23\}$ is a (31, 6, 1) difference set with multiplier 5.

 $\{1, 7, 9, 10, 12, 16, 26, 33, 34\}$ is a (37, 9, 2) difference set with multiplier 7.

 $\{0,1,3,5,9,15,22,25,26,27,34,35,38\}$ is a (40,13,4) difference set with multiplier 3.

But we can also use this method to disprove the existence of certain difference sets.

If a (31, 10, 3) difference set were to exist, then 7 would be a multiplier.

But the map $x \mapsto 7x \mod 31$ has one orbit of size 1 and two of size 15. No union of these can be of size 10.

Hence, a (31, 10, 3) difference set does not exist.

A (56, 11, 2) difference set does not exist. The map $x \mapsto 3 \mod 56$ does contain orbits with unions of size 11, but none of them give rise to such a difference set.

As for a (43,7,1) difference set, there are three orbits for m = 2 of size 14 and one of size 1, and there is one orbit for m = 3 of size 42 and one of size 1. Thus, there is no (43,7,1) difference set.

I hope this talk has made a difference.

THANK YOU!