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What to expect

Difference sets

Multipliers

Orbits

Finding difference sets using multipliers
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Introduction to difference sets

A (v , k , λ) difference set is a k-element subset D of V = Z mod v such
that every nonzero element of V can be expressed as a difference a− b of
elements a, b ∈ D in exactly λ ways. Here are a couple of examples.
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The (7, 3, 1) difference set

Let D = {1, 2, 4}, a 3-element set (k = 3).

Look at the differences of elements of D mod 7 (v = 7):

2− 1 ≡ 1 1− 4 ≡ 4
4− 2 ≡ 2 2− 4 ≡ 5
4− 1 ≡ 3 1− 2 ≡ 6

The numbers {1, 2, 3, 4, 5, 6} are each expressible as a difference of
elements of D in exactly 1 way (λ = 1).

Hence, D = {1, 2, 4} is a (v , k, λ) = (7, 3, 1) difference set.
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The (11, 5, 2) difference set

Look at the differences of elements of D{1, 3, 4, 5, 9} mod 11:

1 ≡ 4− 3 ≡ 5− 4 2 ≡ 3− 1 ≡ 5− 3 3 ≡ 4− 1 ≡ 1− 9

4 ≡ 5− 1 ≡ 9− 5 5 ≡ 9− 4 ≡ 3− 9 6 ≡ 9− 3 ≡ 4− 9

7 ≡ 1− 5 ≡ 5− 9 8 ≡ 9− 1 ≡ 1− 4 9 ≡ 1− 3 ≡ 3− 5

10 ≡ 3− 4 ≡ 4− 5

The numbers {1, 2, . . . , 10} are each expressible as a difference of elements
of D in exactly 2 ways.

Hence, D = {1, 3, 4, 5, 9} is a (v , k, λ) = (11, 5, 2) difference set.
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The elementary relation

Let D be a (v , k , λ) difference set. Then

D contains k elements, so there are k(k − 1) pairs of distinct
elements of D.

The k(k − 1) nonzero differences between pairs of elements of D mod
v account for λ copies of the v − 1 nonzero integers mod v .

Hence, k(k − 1) = λ(v − 1).

This is a necessary condition on the parameters for the existence of a
(v , k , λ) difference set. We need a sufficient condition that’s easy to check.

That’s where multipliers come in.
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Multipliers

Let D = {x1, . . . , xk} be a difference set. A multiplier of D is an integer m
such that {mxi (mod v) : i = 1, . . . , k} is equal to a translation D + r
(mod v) for some integer r .

Example: D = {2, 3, 5} is a (7, 3, 1) difference set, and

2D mod 7 = D + 1 mod 7 = {3, 4, 6}.

How does this help?
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The Multiplier Theorem

The Multiplier Theorem

Let D be a (v , k , λ) difference set, and let p be a prime such that
(p, v) = 1, p > λ, and p|(k − λ). Then

p is a multiplier of D,and

There exists j such that p · (D + j) ≡ D + j mod v .

More generally, if there is a (v , k , λ)-difference set D with a multiplier m,
then there is a difference set D ′ on these parameters such that D ′ ≡ mD ′

mod v .
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Using the Multiplier Theorem

Examples:

(1) It turns out that 2 is a multiplier for the (7, 3, 1) difference set
D = {1, 2, 4}, and 2D ≡ D mod 7.

(2) Similarly, multiplication by 3 fixes the (11, 5, 2) difference set
D = {1, 3, 4, 5, 9}.

Now, by the Multiplier Theorem, if there is a (21, 5, 1) difference set D,
then 2 is a multiplier of D.
How do we find D?
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Permutations and Orbits

A permutation on a set S is a 1-1 mapping of the set onto itself.

For example, let S = {1, 2, 3, 4, 5}, and define π by π(1) = 3, π(2) = 5,
π(3) = 4, π(4) = 1, π(5) = 2.

If f is a permutation on S , and x ∈ S , then the orbit of f containing x is
the set of iterated images {x , f (x), f (f (x)), . . .}

Thus, the orbits of π are {1, 3, 4} and {2, 5}.
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Permutations and Orbits and Multipliers

The orbits of x 7→ 2x mod 7 on Z7 are {0}, {1, 2, 4}, and {3, 6, 5}.

{1, 2, 4} is a (7, 3, 1) difference set fixed by this map.

Isn’t that interesting?

The orbits of x 7→ 3x mod 11 on Z11 are {0}, {1, 3, 9, 5, 4}, and
{2, 6, 7, 10, 8} — and {1, 3, 9, 5, 4} is an (11, 5, 2) difference set fixed
by the given mapping.

Isn’t that interesting?
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Permutations and Orbits and Multipliers

FACT 1: If (m, v) = 1, then the mapping m 7→ 2m mod v is a
permutation on Zv .

FACT 2: If m is a multiplier of a (v , k , λ) difference set D, then some
translation of D is fixed by m 7→ 2m mod v . Therefore:

FACT 3: If a (v , k , λ) difference set D is fixed by a multiplier m, then D is
a union of orbits of the map m 7→ 2m mod v . So:
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Orbits and Multipliers: A Plan

WILD IDEA: If v , k, and λ satisfy the relation k(k − 1) = λ(v − 1), and p
satisfies the conditions in the Multiplier Theorem, then the set of orbits of
x 7→ px mod v just might contain a (v , k , λ) difference set.

ACTION PLAN: Look through such orbits and find some of them whose
union (a) contains k elements and (b) produces a (v , k , λ) difference set.
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Orbits and Multipliers: Examples

The Multiplier Theorem tells us that if D is a (21, 5, 1) difference set, then
2 is a multiplier of D — and so it fixes a translate of D.

The orbits of x 7→ 2x mod 21 are {0}, {1, 2, 4, 8, 16, 11}, {3, 6, 12},
{5, 10, 20, 19, 17, 13}, {7, 14}, and {9, 18, 15}. We find that

{3, 6, 7, 12, 14} = {3, 6, 12} ∪ {7, 14} is indeed a (21, 5, 1) difference set.

The orbits of x 7→ 2x mod 15 are {0}, {1, 2, 4, 8}, {3, 6, 12, 9}, {5, 10},
and {7, 14, 13, 11}; — and {0, 1, 2, 4, 8, 5, 10} is a (15, 7, 3) difference set.
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Orbits and Multipliers: Examples

Using this method led to the discovery of these difference sets:

{1, 5, 25, 17, 22, 23} is a (31, 6, 1) difference set with multiplier 5.

{1, 7, 9, 10, 12, 16, 26, 33, 34} is a (37, 9, 2) difference set with multiplier 7.

{0, 1, 3, 5, 9, 15, 22, 25, 26, 27, 34, 35, 38} is a (40, 13, 4) difference set with
multiplier 3.

But we can also use this method to disprove the existence of certain
difference sets.
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Orbits and Multipliers: Nonexistence

If a (31, 10, 3) difference set were to exist, then 7 would be a multiplier.

But the map x 7→ 7x mod 31 has one orbit of size 1 and two of size 15.
No union of these can be of size 10.

Hence, a (31, 10, 3) difference set does not exist.

A (56, 11, 2) difference set does not exist. The map x 7→ 3 mod 56 does
contain orbits with unions of size 11, but none of them give rise to such a
difference set.

As for a (43, 7, 1) difference set, there are three orbits for m = 2 of size 14
and one of size 1, and there is one orbit for m = 3 of size 42 and one of
size 1. Thus, there is no (43, 7, 1) difference set.
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Last thought

I hope this talk has made a difference.
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THANK YOU!
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