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A Brief History

• In 1772, Euler gave a simplified proof of Lagrange’s Theorem of
Four Squares.
• In 1834, Jacobi gave a proof of a formula for the number of
representations of a positive integer as a sum of four integer
squares.
• In 1843, Hamilton discovered quaternions.
• In 1886, Lipschitz gave a quaternionic proof of Jacobi’s formula.
• In 1896, Hurwitz gave another quaternionic proof of Jacobi’s
formula.
• In 2004, J. Deutsch gave a quaternionic proof for the
representation formula associated with the quadratic form
x2 + y2 + 2z2 + 2w2 based on analogues of Hurwitz quaternions.
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Some of My Recent Work

• Inspired by Lipschitz’s work, the author gave in 2011 a variant
proof of the Jacobi’s formula for the number of representations of
a positive integer as a sum of four integer squares.
• In 2012, the author gave a quaternionic proof for the number of
representations associated with the quadratic forms
x2 + y2 + 2z2 + 2w2 and x2 + y2 + 3z2 + 3w2 based on Lipschitz
type quaternions.
• In 2012, the author gave a quaternionic proof for the number of
representations associated with the quadratic form
x2 + 2y2 + 2z2 + 4w2.

Cherng-tiao Perng On a Formula of Liouville Type for the Quadratic Form x2 + 2y2 + 2z2 + 4w2



Outline
Introduction

Brief Introduction of Quaternions
Unique Factorization in the Standard Model

Main Ideas of the Proof

The Representation Formula for the Quadratic Form
x2 + 2y 2 + 2z2 + 4w 2

This was first proposed by Liouville (1862), so we call it a formula
of Liouville type.

Theorem. Let n = 2αN. Then the number S of representations of
n in terms of the quadratic form x2 + 2y2 + 2z2 + 4w2 is given by

S =


2σ(N) if α = 0,
4σ(N) if α = 1,
8σ(N) if α = 2,
24σ(N) if α ≥ 3,

where σ is the sum of divisors function.
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Lipschitz Quaternions

For the purpose of this talk, we briefly mention the concept of the
set of Lipschitz quaternions. It is a ring generated by the symbols
i , j and k, subject to the multiplication rules i2 = j2 = k2 = −1
and ij = −ji = k. More precisely, any Lipschitz quaternion is of the
form a+ bi + cj + dk , where a, b, c , d are integers. It can be
shown that the multiplication is associated but non-commutative.

For any Lipschitz quaternion Q = a+ bi + cj + dk , we define its
conjugate Q by Q = a− bi − cj − dk . Furthermore, we define its
norm by Nm(Q) = QQ = QQ = a2 + b2 + c2 + d2. We will need
also the notion of reduction modulo a prime p, in which case, the
components of the quaternions would stay in the finite field Fp.
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Lipschitz Type Quaternions

For proving the Liouville type formula stated above, we need the
following generalization of Lipschitz quaternions:

Definition. Let L = {a+ b
√
2i + c

√
2j + 2dk | a, b, c , d ∈ Z}.

It is easy to show that L is closed under multiplication. We define
also the conjugate and norm for Q = a+ b

√
2i + c

√
2j + 2dk ∈ L

as follows:

Q = a− b
√
2i − c

√
2j − 2dk

and
Nm(Q) = QQ = a2 + 2b2 + 2c2 + 4d2.
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Further Definitions

We adopt a shorthand notation for Q = a+ b
√
2i + c

√
2j + 2dk

by [a, b, c , d ].

Definition. A quaternion [a, b, c , d ] = Q ∈ L is primitive if
gcd(a, b, c , d) = 1.

Definition. A quaternion Q ∈ L is a unit if Nm(Q) = 1. It is easy
to check that L has only two units, i.e. ±1.

Definition. Two quaternions Q1,Q2 ∈ L are equivalent if there
exists a unit ϵ ∈ L such that Q2 = ϵQ1.

Definition. We say Q ∈ L is a prime quaternion if Nm(Q) is a
rational prime.

Definition. We say that Q ∈ L is p-pure if Nm(Q) = pr .
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Correspondence Theorem

Lemma. Let p > 2 be a prime. There are precisely p + 1
projective solutions for

x2 + 2y2 + 2z2 = 0 over Fp.

We will lift the solutions to Z and represent them in the form of
p-primitive quaternion X = [x , y , z , 0] (i.e. x + y

√
2i + z

√
2j ,

x , y , z ∈ Z, not all zero mod p).
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Correspondence Theorem (Continued)

Let p > 2. Let S be the set of projective solutions of
x2 + 2y2 + 2z2 = 0 over Fp and T be the set of equivalence
classes of prime quaternions of norm p.

Theorem. (Correspondence Theorem) Let p > 2. Then there
exists a naturally defined bijection Ψ : S → T . In particular, there
are precisely p + 1 equivalence classes of prime quaternions of
norm p.
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Unique Factorization

Theorem. (a) Any primitive quaternion Q of norm 2s0ps11 · · · pskk
can be factored uniquely under the standard model, namely

Q = ϵQ0Q1 · · ·Qk ,

where ϵ is a unit, Q0 = 1 (if s0 = 0) or one of the representatives
of the primitive quaternions of norm 2s0 , and for 1 ≤ i ≤ k, Qi is a
product of si ’s prime quaternions from the set of representatives of
equivalence classes of prime quaternions of norm pi .
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Unique Factorization (Continued)

(b) Any non-primitive quaternion Q ′ = mQ (with m > 1 and Q
primitive of norm given as above) can be factored uniquely in the
form

Q ′ = ϵ(2t0Q0)(p
t1
1 Q1) · · · (ptkk Qk)

under the model 2r0pr11 · · · prkk (still called standard), where
ri = 2ti + si , 0 ≤ i ≤ k and m = 2t0pt11 · · · ptkk , and Qi , 0 ≤ i ≤ k is
as described in (a).
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• The formula Nm([x , y , z ,w ]) = x2 + 2y2 + 2z2 + 4w2 indicates
that the number of representations of n in terms of the quadratic
form x2 + 2y2 + 2z2 + 4w2 equals the number of quaternions in L
of norm n.

• This motivates the study of factorization in L.

• The factorization of 2-pure Q ∈ L into factors of prime
quaternions may not always work, hence we consider only 2-pure
primitive quaternions as part of the building blocks in the
factorization.
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Main Ideas of the Proof (Continued)

• The proof of the representation formula for the quadratic form
x2 + 2y2 + 2z2 + 4w2 is based on the Unique Factorization, where
we build a factorization by a unit, a representative of 2-pure
primitive quaternions, and the product of representatives of
quaternions of odd prime norm.

• Since we know how to count the number of equivalence classes
of 2-pure quaternions, and the number of equivalence classes of
p-pure quaternions (for p > 2) based on the Correspondence
Theorem, the representation formula follows easily.

For details, please refer to my paper “On a Formula of Liouville
Type for the Quadratic Form x2 + 2y2 + 2z2 + 4w2”, International
Mathematical Forum, Vol. 8, 2013, no. 33, 1605 - 1614.
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Example

We give an example when n = 24 = 23 · 3. By brute-force search
for the number of vectors (x , y , z ,w) with
x2 + 2y2 + 2z2 + 4w2 = 24, we get that S = 96. See the following
SAGE code for computation:

S = 0
for i in range(-4,5):
for j in range(-3,4):
for k in range(-3,4):
for l in range(-2,3):
if norm((i,j,k,l))==24:
S = S +1

S = 96
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Example (Continued)

Note that n = 23 · 3.

• There are precisely 4 = 3 + 1 equivalence classes of the Lipschitz
type quaternions of norm 3: 1 +

√
2i , 1−

√
2i , 1 +

√
2j and

1−
√
2j .

• There are precisely 12 equivalence classes of the Lipschitz type
quaternions of norm 8: 2 classes of the form 2Q, where Q is
primitive of Nm(Q) = 2, and 10 classes of primitive Q such that
Nm(Q) = 8. More precisely, these are represented by
2
√
2i , 2

√
2j , 2± 2k,

√
2i ±

√
2j ± 2k, and 2±

√
2i ±

√
2j .

By our construction, S = 2 · 12 · 4 = 24σ(3) = 96.
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