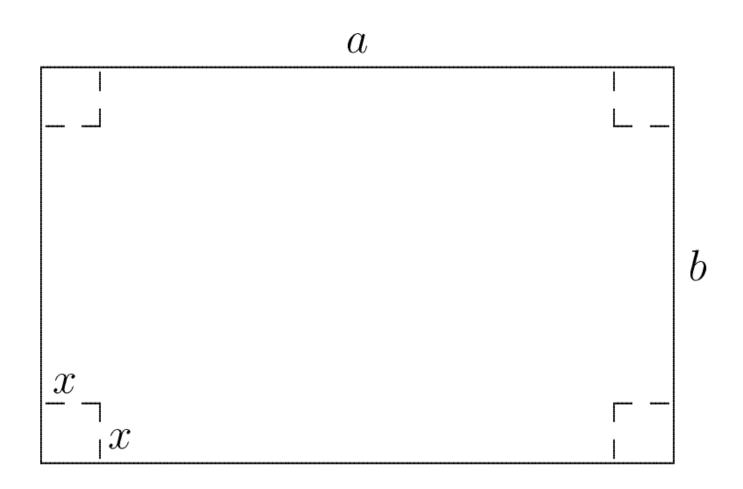
Mathematical Association of America MD-DC-VA Section Meeting November 2, 2013

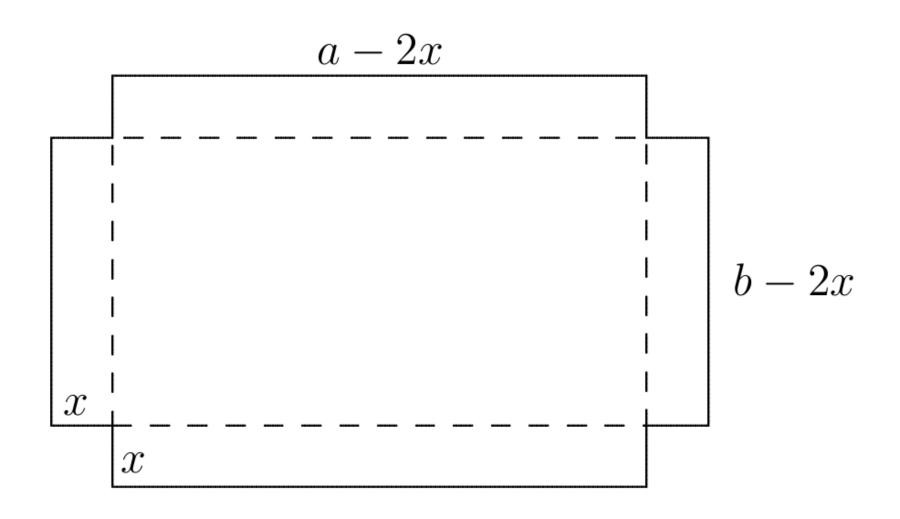
An Arithmetic View of a Classical Calculus Problem

Larry Lehman
University of Mary Washington

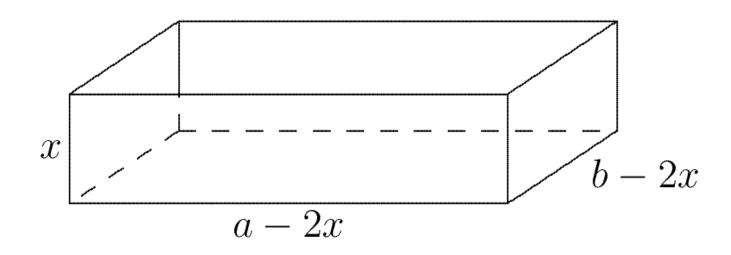
Calculus problem



Squares cut from each corner



Flaps folded to form open box



$$V = x(a - 2x)(b - 2x) = 4x^3 - 2(a + b)x^2 + abx$$

Calculus solution

$$V'(x) = 0$$
 if and only if $x = \frac{a+b\pm c}{6}$, where $c = \sqrt{a^2 - ab + b^2}$.

If
$$a \ge b > 0$$
, then $a \ge c \ge b$, so that $\frac{a+b-c}{6}$ is the only critical point in $\left(0,\frac{b}{2}\right)$.

Arithmetic question

For what integers a and b is $x = \frac{a+b-c}{6}$ a rational number?

This is true if and only if $c = \sqrt{a^2 - ab + b^2}$ is a rational integer.

Find all integer solutions of $a^2 - ab + b^2 = c^2$ with a > b > 0, and gcd(a, b, c) = 1.

Main result

Let 0 < r < s be integers with gcd(r, s) = 1 and $r \not\equiv s \pmod{3}$, and let t = r + s. Then

(1)
$$(a, b, c) = (t^2 - r^2, t^2 - s^2, t^2 - rs)$$

and

(2)
$$(a,b,c) = (t^2 - r^2, s^2 - r^2, t^2 - rs)$$

are primitive solutions of $a^2 - ab + b^2 = c^2$

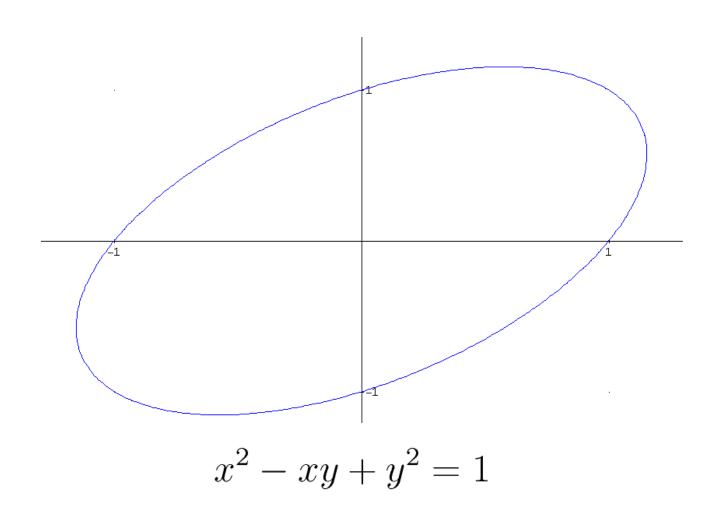
All primitive solutions are obtained in this way.

Arithmetic question rephrased

Find all rational points
$$(x,y) = \left(\frac{a}{c}, \frac{b}{c}\right)$$

on the ellipse $x^2 - xy + y^2 = 1$ with x > 1.

Graph of the ellipse

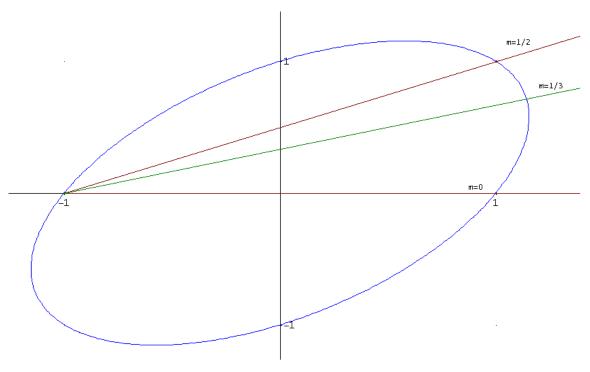


Geometric approach

The line joining a rational point (x, y) and (-1, 0) has rational slope.

If m is a rational number, the line through (-1,0) with slope m meets the ellipse at a rational point.

Example



$$x^2 - xy + y^2 = 1$$
 and $y = \frac{1}{3}(x+1)$
intersect at $\left(\frac{8}{7}, \frac{5}{7}\right)$

Points of intersection

Intersections of y = m(x+1) and $x^2 - xy + y^2 = 1$:

$$x^{2} - x \cdot m(x+1) + m^{2}(x+1)^{2} = 1$$

$$(x^{2} - 1) - mx(x+1) + m^{2}(x+1)^{2} = 0$$

$$(m^{2} - m + 1)x^{2} + (2m^{2} - m)x + (m^{2} - 1) = 0$$

$$(x+1)[(x-1) - mx + m^{2}(x+1)]$$

$$= (x+1)[(1-m+m^{2})x - (1-m^{2})] = 0$$

Rational points on the ellipse (x>1)

$$(x,y) = \left(\frac{1-m^2}{1-m+m^2}, \frac{2m-m^2}{1-m+m^2}\right)$$

where m is a rational number with $0 < m < \frac{1}{2}$.

$$\left(y = m(x+1) = \frac{2m - m^2}{1 - m + m^2}\right)$$

Symmetry of rational points

If (x, y) is a rational point on $x^2 - xy + y^2 = 1$, then so is (x, x - y).

So
$$(x,y) = \left(\frac{1-m^2}{1-m+m^2}, \frac{1-2m}{1-m+m^2}\right)$$

is also a formula for all rational points on $x^2 - xy + y^2 = 1$ with x > 1, when $0 < m < \frac{1}{2}$.

Integer solutions (a,b,c)

If
$$m = \frac{r}{t}$$
 for integers $t \ge 2r \ge 0$ with $\gcd(r, t) = 1$, then $(a, b, c) = (t^2 - r^2, 2rt - r^2, r^2 - rt + t^2)$ and $(a, b, c) = (t^2 - r^2, t^2 - 2rt, r^2 - rt + t^2)$ are integer solutions of $a^2 - ab + b^2 = c^2$.

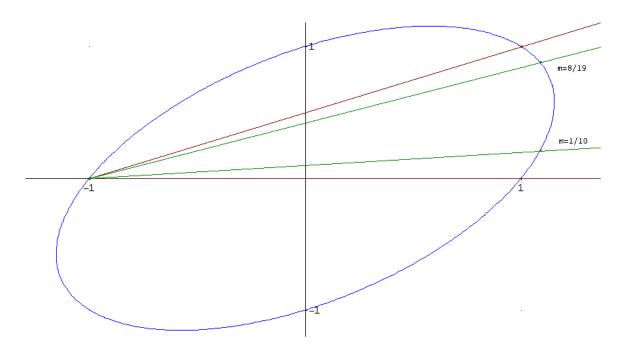
Here
$$\gcd(a, b, c) = 1$$
 if $t \not\equiv 2r \pmod{3}$, while $\gcd(a, b, c) = 3$ if $t \equiv 2r \pmod{3}$.

Relation to slopes

If
$$m = \frac{r}{t}$$
 corresponds to the point (x, y) ,
then $m' = \frac{t - 2r}{2t - r} = \frac{r'}{t'}$ corresponds to $(x, x - y)$.

Exactly one of these slopes satisfies $r \not\equiv 2t \pmod{3}$.

Example



$$\left(\frac{99}{91}, \frac{19}{91}\right)$$
 and $\left(\frac{99}{91}, \frac{80}{91}\right)$

correspond to $m = \frac{1}{10}$ and $m = \frac{8}{19}$ respectively.

Change of notation

So we can restrict our attention to $r \not\equiv 2t \pmod{3}$.

Finally, if
$$s = t - r$$
, so that $r \not\equiv s \pmod{3}$, then
$$t^2 - s^2 = t^2 - (t^2 - 2rt + r^2) = 2rt - r^2,$$
$$s^2 - r^2 = t^2 - 2rt + r^2 - r^2 = t^2 - 2rt,$$
$$t^2 - rs = t^2 - r(t - r) = t^2 - rt + r^2.$$

Main result

Let 0 < r < s be integers with gcd(r, s) = 1 and $r \not\equiv s \pmod{3}$, and let t = r + s. Then

(1)
$$(a, b_1, c) = (t^2 - r^2, t^2 - s^2, t^2 - rs)$$

and

(2)
$$(a, b_2, c) = (t^2 - r^2, s^2 - r^2, t^2 - rs)$$

are primitive solutions of $a^2 - ab + b^2 = c^2$

All primitive solutions are obtained in this way.

Calculus solution implications

In case (1),
$$x_1 = \frac{a+b-c}{6} = \frac{rs}{2}$$
.
In case (2), $x_2 = \frac{a+b-c}{6} = \frac{(s-r)(s+2r)}{6}$.

If r or s is even, then $x_1 = n$ with $n \equiv 0, 1 \pmod{3}$.

If r and s are odd, then $x_1 = \frac{n}{2}$ with $n \equiv 3, 5 \pmod{6}$.

If s is even or $r \equiv s \pmod{2}$, then $x_2 = \frac{n}{3}$ with $n \equiv 2 \pmod{3}$.

If s is odd and r is even, then $x_2 = \frac{n}{6}$ with $n \equiv 1 \pmod{6}$.

Examples

r	s	t	a	b_1	b_2	c	x_1	x_2
1	2	3	8	5	3	7	1	2/3
1	3	4	15	7	8	13	3/2	5/3
2	3	5	21	16	5	19	3	7/6
3	4	7	40	33	7	37	6	5/3
1	5	6	35	11	24	31	5/2	14/3
3	5	8	55	39	16	49	15/2	11/3
4	5	9	65	56	9	61	10	13/6
1	6	7	48	13	35	43	3	20/3
5	6	11	96	85	11	91	15	8/3
2	7	9	77	32	45	67	7	55/6
3	7	10	91	51	40	79	21/2	26/3
5	7	12	119	95	24	109	35/2	17/3
6	7	13	133	120	13	127	21	19/6