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Reasoning question

Consider the following statement:

If G is Keplerian, then |G| is even.

Assuming that “Keplerian” actually means something, answer
the following:

1 Suppose |G| is even. What can you conclude about
whether G is Keplerian or not?

2 Suppose G is not Keplerian. What can you conclude about
|G|?

3 Is |G| being even a necessary, sufficient, or both necessary
and sufficient condition for G to be Keplerian?



A notation/mathematical language problem

The following is an easy problem that I am purposely making
look difficult:

Let m ∈ N. Let d(m, 1), d(m, 2), . . .d(m,n) denote all
the positive integers x for which there exists a y ∈ Z
such that xy = m. Let σ(m) =

∑n
i=1 d(m, i). An

integer m is called teleiotic if σ(m) = 2m. Prove that
prime numbers are not teleiotic.



Graphs — wolf, goat, cabbage problem

A traveler has to get a wolf, a goat, and a cabbage across a
river. The wolf can’t be left alone with the goat, the goat
cant be left alone with the cabbage, and the boat can only
hold the traveler and a single animal/cabbage at once.

Solution:

Each vertex represents a state of the puzzle
Edges between u and v if possible to go from state u to
state v
Can easily find solution by looking at graph or running a
search

Water pouring problems can be similarly represented.
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Graphs — Variant of Kevin Bacon problem

Given two actors, A and A′, find the shortest path between
them such that A was in a movie with B who was in a
movie with C . . . . . . . . . who was in a movie with A′.

Solution:

vertices are movies and actors
edge between two vertices iff one is a movie and the other is
an actor in that movie
run a breadth-first search

Can get a big data file online and have some fun
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Graphs — Instant Insanity

Have to stack the blocks so that no color is repeated on
any of the four sides.

Solution

Vertex for each color
Edge if two colors are on opposite sides of the cube
Label edge with the color name
Find two disjoint Hamiltonian cycles that include edges
labeled with each color name
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Graphs — Graph coloring problem

Table of distances between radio stations:
A B C D E F G
A 55 110 108 60 150 88
B 87 142 133 98 139
C 77 91 85 93
D 75 114 82
E 107 41
F 123

Stations within 100 miles of each other cannot get the same
frequency. Assign frequencies to stations, using the
minimum possible number of frequencies.

Solution:

Vertices are stations
Edge between the stations if they are within 100 miles of
each other
Colors are frequencies (find a minimal proper coloring)

Lots of similar problems to this can be made. . .
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Graphs — Another graph coloring problem

Below is a list of the exams (letters) each student
(numbers) took. Is it possible to schedule the exams on
three separate days so no student would be scheduled for
two exams at once?
1 (A,C,D) 2 (A,E,F) 3 (A,E,I) 4 (B,C,D)
5 (B,D,H) 6 (B,D,H) 7 (B,C,G)

Solution:

Vertices are exams
Edge between exams if two people are taking that exam
Colors are exam days (find a proper coloring with 3 colors)
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Middle levels problem

List the 2- and 3-element subsets of {1, 2, 3, 4, 5} according to
the following rules:

Start and end with 12. Each other subset appears exactly
once.

Alternate between 2- and 3-element subsets, such that each
subset in the list is obtained from the previous one by
either adding or deleting a single element.

A possible answer:

12, 123, 13, 134, 34, 345, 35, 135, 15, 25, . . . , 125, 12



Using Nim to introduce induction

Players take turns removing 1 or 2 pieces of paper at a
time from a pile. Person who takes the last piece loses.
What is the optimal strategy?

Let students play for a while. . .

Idea of solution:

1 is a losing position.
Therefore 2 and 3 are winning positions.
Therefore 4 is a losing position.
Therefore 5 and 6 are winning positions. . .
Losing positions: 1, 4, 7, 10, 13, . . .
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Non-algebraic induction problems

In a round-robin tournament, where every team plays every
other team, show that if there are an odd number teams,
then it is possible to have the tournament turn out with
every team having the exact same number of wins and
losses.

Idea of solution: Assuming that it can happen for 2n− 1
teams, show how it could happen for 2 more teams).

There are n! permutations of {1, 2, . . . , n}.

Idea of solution:
123 → 4123, 1423, 1243, 1234
132 → 4132, 1432, 1342, 1324
. . .
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Non-algebraic induction problems

Number of k-element subsets of {1, 2, . . . , n}

Idea of solution: Subsets of {1, 2, . . . , n} consist of the
k-element subsets of {1, 2, . . . n− 1} along with the
(k− 1)-element subsets of {1, 2, . . . , n− 1} with an n added.

x2 + y2 = z2n has an integer solution for all n ≥ 1.

Idea of solution: Multiply x2 + y2 = z2 through by z2 to
get (xz)2 + (yz)2 = z4
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Non-algebraic induction problems

Sum of the angles in a polygon is 180(n− 2) for n ≥ 3.

Idea of solution: Break an n-gon up into an (n− 1)-gon
and a triangle

Football w/ 3 and 7 points only. Show that any score
above 11 can be obtained

Idea of solution: How do we go from n to n+ 1? Replace 2
touchdowns with 5 field goals or replace 2 field goals with
one touchdown.

Every tree can be colored with two colors.

Idea of solution: Pull off a leaf. Left with a tree on less
vertices and can easily color the leaf.
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Non-algebraic induction problems – Chomp

Chomp: The bottom left square is poisoned. Players take turns
chomping parts of the candy bar off. When a player chomps off
a portion, they pick a square and everything above and to the
right of that square is chomped off, like in the figure below. The
player who is stuck at the end with the poisoned square loses.

What is the ideal strategy for the 2× n case?
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Non-algebraic induction problems – Chomp solution

Idea of solution: A 2× k with the top right square missing is a
losing position. All others are winning positions.



Function problem

A = {a, b, c}.

A∗ = a, b, c, aa, ab, ac, ba, . . . be all words with letters from A.

f : A∗ → A∗ by replacing every b in w with a.

1 Find the range of f .

2 One-to-one? Onto?

3 Find f−1({aa}).
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Function problem

f(G) is number of odd-degree vertices in graph G.

1 Find f(P5) where P5 is a path on five vertices.

2 One-to-one? Onto?

3 What is f−1({4}) ∩ {G ∈ G : G has an Eulerian tour}?



Function problem

Let A = {1, 2, 3, 4, 5}. f : P(A)→ Z, defined by f(X) = |X|
mod 2.

1 Range?

2 f(B), where B = {{1, 2}, {1, 2, 3}, {2, 3, 4}}.
3 f−1({1})
4 One-to-one? Onto?



Function problem

The Caesar shift cipher shifts every character by 3 in the
alphabet, wrapping around as necessary.

f : {a, b, . . . z} → Z maps each letter to its position in the
alphabet

Find a formula for it in terms of f and a shifting function
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Find the equation of a function. . .

On a certain 50-question test you get a point for each
correct answer and lose a point for every four incorrect
answers. Find a function, s(x), giving the score on the test,
where x is the number of correct answers.

Let x be a measurement in inches. We want functions f
and g that convert x to a measurement in feet and inches.
For instance, 74 inches is 6 feet, 2 inches, and we would
want f(74) = 6 and g(74) = 2.



Find the equation of a function. . .

Suppose you put $4000 in the bank and it collects interest
at a rate of 3%, compounded yearly. No further money is
added to the account nor is any money ever withdrawn.
Create a function f(x) that gives the number of years it
takes for the account to be worth x dollars.

In 2007, the postage rate for a certain type of mail up to 13
ounces is 25 cents for the first ounce or fraction thereof and
17 cents for each additional ounce or fraction thereof.
Create a function P (w) giving the postage rate for w
ounces.



Find the equation of a function. . .

Two ways of describing the entries in a table. Find a
function f that maps the first scheme into the second
scheme. For instance f(0, 0) = 0, f(1, 1) = 5, and
f(3, 2) = 14.

(0,0) 0 (0,1) 1 (0,2) 2 (0,3) 3
(1,0) 4 (1,1) 5 (1,2) 6 (1,3) 7
(2,0) 8 (2,1) 9 (2,2) 10 (2,3) 11
(3,0) 12 (3,1) 13 (3,2) 14 (3,3) 15

Come up with a formula for f−1 in the problem above.



First writing assignment



Second writing assignment



Third writing assignment



Fourth writing assignment



Final project

8-page multidraft paper

How random numbers are
generated
Cryptography
Bitwise operations
Ackermann’s function and really
large numbers
Four color theorem
Information theory
Bioinformatics
P=NP problem
Cellular automata
Game theory
Voting theory
Graph algorithms
Ramsey theory
Pythagorean triples
Mathematics of Rubik’s Cubes
Hashing
Magic squares
Number bases and number

systems
Error-correcting codes
Combinatorial designs
Logical paradoxes
Irrational and transcendental
numbers
Interesting primality tests
Mathematical card and magic
tricks
Recursive algorithms
Ant colony algorithms
Monte Carlo simulations
Regular expressions
L-systems
Solving recurrence relations
Bayes’ theorem and consequences
Analyzing social networks and
large data sets
Mathematics of origami


