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Partial Orders in Music Theory

• Submajorization and Voice Leading

‣ Tymoczko (2004, 2008), Callendar, Quinn and Tymoczko (2008), 
Hall and Tymoczko (2012)

• Set Inclusion and Pitch Class Sets

‣ Straus (2005)

• New Ideas

‣ Extemal elements and harmony

‣ Stochastic dominance and timbre



Some Connections

• Submajorization and Voice Leading (Tymoczko)
• Orbifolds and Musical Geometry (Tymoczko)

• The Geometry and Topology of Three-Manifolds 
(Thurston, 1980)

• Geometrization Conjecture (Thurston, 1982)

• Perelman’s proof of the Poincare Conjecture 
(Perelman, 2003)

• Perelman refuses Fields Medal (2006) and Clay 
Millenium Prize (Perelman, 2010, $106)



Orderings

• A partial order on a 
set S is a relation ≤ 
that is

‣ Reflexive:  a ≤ a for all 
a ∈ S

‣ Transitive:  a ≤ b and b 
≤ c implies a ≤ c for all 
a, b, c ∈ S

‣ Antisymmetric:  a ≤ b 
and b ≤ a implies a = b 
for all a, b ∈ S
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Orderings

• A partial order on a 
set S is a relation ≤ 
that is

‣ Reflexive:  a ≤ a for all 
a ∈ S

‣ Transitive:  a ≤ b and b 
≤ c implies a ≤ c for all 
a, b, c ∈ S

‣ Antisymmetric:  a ≤ b 
and b ≤ a implies a = b 
for all a, b ∈ S a, b incomparable

S

a
b



Set Inclusion Ordering
• Partial order induced by set 

inclusion.

• Music theory: scales and 
harmony

‣ C pentatonic: {C, D, E, G, A}

‣ C diatonic: {C, D, E, F, G, A, B}

‣ C pentatonic ⊆ C diatonic

• Theme: partial order models some notion of size or 
precedence among musical objects



Partial Order modulo Group

• Often we want to identify certain musical objects 
as being essentially “the same”:

‣ All diatonic scales are “the same”: C major ≡ G major ≡ ...

‣ “transpositional equivalence”

‣ All notes separated by whole octaves are “the same”: middle A ≡ 
high A ≡ ...

‣ “octave equivalence”
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• S =    = “infinite keyboard”Z



Example: Pitch Class Space

• S =    = “infinite keyboard”

......

Z



Example: Pitch Class Space

• S =    = “infinite keyboard”

69

706866585654464442 828078

71 72 74 76 77 79 81 8353 55 57 59 60 62 64 65 6741 43 45 47 48 50 52

49 51 61 63 73 75 ......

Z



Example: Pitch Class Space

• S =    = “infinite keyboard”

• G = < z + 12 > = “ octave equivalence”

69

706866585654464442 828078

71 72 74 76 77 79 81 8353 55 57 59 60 62 64 65 6741 43 45 47 48 50 52

49 51 61 63 73 75 ......

Z



Example: Pitch Class Space

• S =    = “infinite keyboard”

• G = < z + 12 > = “ octave equivalence”

69

706866585654464442 828078

71 72 74 76 77 79 81 8353 55 57 59 60 62 64 65 6741 43 45 47 48 50 52

49 51 61 63 73 75 ......

Z



Example: Pitch Class Space

• S =    = “infinite keyboard”

• G = < z + 12 > = “ octave equivalence”

69

706866585654464442 828078

71 72 74 76 77 79 81 8353 55 57 59 60 62 64 65 6741 43 45 47 48 50 52

49 51 61 63 73 75 ......

Z



Example: Pitch Class Space

• S =    = “infinite keyboard”

• G = < z + 12 > = “ octave equivalence”

69

706866585654464442 828078

71 72 74 76 77 79 81 8353 55 57 59 60 62 64 65 6741 43 45 47 48 50 52

49 51 61 63 73 75 ......

Z



Example: Pitch Class Space

• S =    = “infinite keyboard”

• G = < z + 12 > = “ octave equivalence”

69

706866585654464442 828078

71 72 74 76 77 79 81 8353 55 57 59 60 62 64 65 6741 43 45 47 48 50 52

49 51 61 63 73 75 ......

Z



Example: Pitch Class Space

69

706866585654464442 828078

71 72 74 76 77 79 81 8353 55 57 59 60 62 64 65 6741 43 45 47 48 50 52

49 51 61 63 73 75 ......

Z• S =    = “infinite keyboard”

• G = < z + 12 > = “ octave equivalence”

• S / G =       = “pitch class space”Z12



Example: Pitch Class Space

• S =    = “infinite keyboard”

• G = < z + 12 > = “ octave equivalence”

• S / G =       = “pitch class space”

9

1086

110 2 4 5 7

1 3

Z

Z12

9

1086

110 2 4 5 7

1 3

9

1086

110 2 4 5 7

1 3

9

1086

115 7

1 ......



Example: Pitch Class Space

• S =    = “infinite keyboard”

• G = < z + 12 > = “octave equivalence”

• S / G =       = “pitch class space”

9

1086

110 2 4 5 7

1 3

Z

Z12

9

1086

110 2 4 5 7

1 3

9

1086

110 2 4 5 7

1 3

9

1086

115 7

1 ......



Example: Pitch Class Space

• S =    = “infinite keyboard”

• G = < z + 12 > = “octave equivalence”

• S / G =       = “pitch class space”

9

1086

110 2 4 5 7

1 3

Z

Z12

1



Example: Pitch Class Space

• S =    = “infinite keyboard”

• G = < z + 12 > = “octave equivalence”

• S / G =       = “pitch class space”

9

1086

110 2 4 5 7

1 3

Z

Z12

1



Partial Order modulo Group

• We may also want to model some notion of 
musical “motion” or “transformation”:

‣ Transpose all notes up one octave.

‣ Move from the tonic to the dominant.



Partial Order modulo Group

• A group G acting on S can serve both purposes:

‣ Equivalence: a, b ∈ S are “the same” if b = Ta for some T  ∈ G.

‣ Motion: can “move” from a to b if b = Ta for some T  ∈ G



Partial Order modulo Group

• A group G acting on S can serve both purposes:

‣ Equivalence: a, b ∈ S are “the same” if b = Ta for some T  ∈ G.

‣ Motion: can “move” from a to b if b = Ta for some T  ∈ G

How do the group and the partial order interact?



Partial Order modulo Group

• Equivalence classes

‣ A = [a] = set of all b ∈ S that are essentially “the same” as a.

= {b ∈ S : b = Ta for some T  ∈ G}

‣ S / G = set of all distinct equivalence classes.



Partial Order modulo Group

• Equivalence classes

‣ A = [a] = set of all b ∈ S that are essentially “the same” as a.

• Induced relation on S / G

‣ A ≤ B if and only for all x ∈ A there exists y ∈ B such that x ≤ y

= {b ∈ S : b = Ta for some T  ∈ G}

‣ S / G = set of all distinct equivalence classes.
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Partial Order modulo Group

Theorem 1

If G acts transversely on S, then the induced relation is a partial 
order on S / G.

‣ G acts transversely on S if, for all T  ∈ G and all a  ∈ S, either Ta and 
a are incomparable, or they are identical. 

a Ta a = Ta

Ta

a
✔ ✔ ✘
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A Partial Order on Scales

• Equivalences

‣ Octave equivalence

‣ Transpositions (translations) of a scale are all “the same”

‣ C major ≡ G major ≡ D major ≡ ...

‣ Modes (rotations) of a scale are all “the same”

‣ (2,2,1,2,2,2,1) ≡ (2,1,2,2,2,1,2) ≡ (1,2,2,2,1,2,2) ≡ ...
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A Partial Order on Scales

• S = {all dense scales},    ≤ = set inclusion

• G = < octave equivalence, transpositions, rotations >

✓G acts transversely on S

✓S / G is a partial order



A Partial Order on Scales

• S / G contains 31 distinct scales.

• S / G has four minimal elements:

‣ whole tone scale

‣ diatonic scale

‣ melodic minor scale

‣ octatonic scale



A Partial Order on Scales

• Partial order from the whole tone scale

whole tone

chromatic

Messiaen 7

Messiaen 3

Messiaen 6



A Partial Order on Scales

• Partial order from the diatonic scale

min. blues (1) maj. 
blues

diatonic

chromatic

... ... ... ... ...

... ... ... ... ...



A Partial Order on Scales

• Partial order from the melodic minor scale

melodic minor

chromatic
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... ... ... ... ... ... ... ... ...



A Partial Order on Scales

• Partial order from the octatonic scale

octatonic

chromatic

Messiaen 7



A Partial Order on Scales

• Generalization: Dense(k)Scale: a scale consisting solely 
of steps of size 1, or 2, or ... or k.
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Theorem 2
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third spans at least k + 1 semitones. 
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Partial Order modulo Group

Theorem 2

A scale in Dense(k) mod G is minimal if and only if every scalar 
third spans at least k + 1 semitones. 

‣ A scalar third is the sum of two consecutive steps in a scale. 

‣ (2,2,1,2,2,2,1) in Dense(2) mod G has scalar thirds (4,3,3,4,4,3,3).

‣ Theorem 2 is true in N-tone equal temperament.



A Partial Order on Scales

• Dense(3) has seven minimal elements:

‣ (1,3,1,3,1,3), a symmetric scale (R. Daly, “Pulp Fiction”)

‣ (2,2,2,2,2,2), the whole tone scale

‣ (2,2,3,2,3), the pentatonic scale

‣ (2,2,3,3,2), the dominant ninth chord

‣ (3,1,3,2,3), a blues scale

‣ (3,1,3,3,2), the dominant seventh + sharp ninth chord 
(J. Hendrix, “Foxy Lady”)

‣ (3,3,3,3), the fully diminished chord



A Partial Order on Scales

• Dense(4) has an additional six minimal elements:

‣ (3,3,4,2), the minor seventh, flat fifth chord

‣ (3,4,3,2), the minor seventh chord

‣ (4,2,4,2), the dominant seventh, flat fifth chord

‣ (4,3,3,2), the dominant seventh chord

‣ (4,3,4,1), the major seventh chord

‣ (4,4,4), the augmented triad



A Partial Order on Scales

• Dense(5) has an additional four minimal elements:

‣ (3,4,5), the minor triad

‣ (4,3,5), the major triad

‣ (5,1,5,1), a symmetric chord

‣ (5,5,2), the quartal triad (H. Hancock, “Maiden Voyage”)



A Timbral Partial Order

• Timbre is the “characteristic sound” of a musical 
voice.

‣ many aspects; notoriously difficult to quantify

• But musicians commonly speak about timbre in 
comparative ways

‣ “a trumpet is brighter than a french horn”

‣ “he sings like Bob Dylan with a head cold”

• Can we model these judgements using a partial 
order?



A Timbral Partial Order

• Discrete power spectrum model for “steady-state 
timbre”.
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A Timbral Partial Order

• Discrete power spectrum model for “steady-state 
timbre”.

f0 2f0 3f0 4f0 5f0 6f0

a1
a2

a3
a4

a5
a6

S  = {all timbral vectors} = {all probability vectors}



A Timbral Partial Order

• “Brightness” aspect of timbre

‣ refers to a prevalence of high harmonics in the sound

• The “Brightness” partial order

‣ Timbral vector b is “brighter than” timbral vector a if

�

j≥k

aj ≤
�

j≥k

bj ∀k

‣ I.e. every high-pass filter returns more power from b than 
from a



A Timbral Partial Order

Six Instruments in the “Brightness” Order



Sound Design Problem

• Among all instruments which are no brighter than 
a trumpet, which has the timbre that is closest to 
an oboe?

• How do we measure “closeness”?

• Total Variational Distance

‣ maximum power differential across subsets of harmonics

dtv(x, y) = {
�

i∈I

|xi − yi| : I ⊆ 1, 2, . . . , n}



Sound Design Problem

• Constrained Optimization Problem

Minimize: dtv(x, oboe)

Subject to: x ≤ trumpet in the “brightness” order
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Sound Design Problem

Minimize: �x− oboe�1
Subject to: Hx ≤ H(trumpet) component-wise

Solution to Sound Design Problem

Thanks!
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