Mathematical Association of America MD-DC-VA Section Meeting October 27, 2012

SUBORDERS OF QUADRATIC POLYNOMIALS MODULO PRIMES

LARRY LEHMAN UNIVERSITY OF MARY WASHINGTON

MOTIVATING QUESTION

Let $r_n = sr_{n-1} + tr_{n-2}$ for some s,t in Z, with $r_0 = 0$ and $r_1 = 1$.

If p is a prime number, consider r_n in Z_p , a field with p elements.

What is the smallest positive integer *m* for which $r_m = 0$ in Z_p ?

EXAMPLE

 $r_n = r_{n-1} - 3r_{n-2} : 0, 1, 1, -2, -5, 1, 16, 13, -35, -74, 31, 253, 160, \dots$

 $r_n \mod 5:0, 1, 1, -2, 0, 1, 1, -2, 0, \dots$ m = 4 $r_n \mod 7:0, 1, 1, -2, 2, 1, 2, -1, 0, 3, 3, \dots$ m = 8 $r_n \mod 11:0, 1, 1, -2, -5, 1, 5, 2, -2, -3, -2, 0, -5, \dots$ m = 11

EQUIVALENT QUESTION

Let $f(x) = x^2 - sx - t = x^2 + bx + c$ be a polynomial with integer coefficients.

If *p* is prime, what is the smallest positive integer *m* so that f(x) divides some polynomial of the form $x^m - d$ in $Z_p[x]$?

Such an *m* exists if *p* does not divide c.

We call *m* the suborder of f(x) modulo *p*: $sub_p(f) = m$.

SUBNUMBERS OF POLYNOMIALS

If $f(x) = x^2 + bx + c$ with c not zero in Z_p , define the subnumber of f(x) in Z_p to be:

$$a = a_p(f) = b^2 c^{-1} - 2$$

If f(x) and g(x) have the same subnumber in Z_p , then they have the same suborder modulo p.

PROOF

Let $f(x) = x^2 + bx + c$ and $g(x) = x^2 + rx + s$ with c and s not zero in Z_p .

Suppose that $b^2c^{-1} - 2 = r^2s^{-1} - 2$ in Z_p , so $b^2s = r^2c$.

Here $b = 0 \iff r = 0 \iff sub_p(f) = 2 = sub_p(g)$.

If b and r are not zero, then $g(x) = x^2 + btx + ct^2$ where $t = b^{-1}r$.

In that case, f(x) divides $x^m - d \leftrightarrow g(x)$ divides $x^m - t^m d$ in $Z_p[x]$.

THE SUBORDER FUNCTION

For all *a* in Z_p , write $sub_p(a) = m$ if there is a quadratic polynomial f(x) with subnumber *a* for which $sub_p(f) = m$.

So for all primes p, the suborder is a well-defined function from Z_p to Z.

What can we say about this suborder function on Z_p ?

PROPERTIES OF THE SUBORDER FUNCTION

 $sub_{p}(-2) = 2$ and $sub_{p}(2) = p$.

If $a \neq \pm 2$ in Z_p , then $sub_p(a) = m$ is a divisor of p-1 or p+1.

For each divisor m>2 of p-1 or p+1, there are precisely $\varphi(m)/2$ elements a in Z_p with $sub_p(a) = m$.

If $sub_p(a) = m$, then $sub_p(-a) = 2m$, if m is odd, $sub_p(-a) = m/2$, if $m \equiv 2 \pmod{4}$, $sub_p(-a) = m$, if $m \equiv 0 \pmod{4}$.

If $sub_p(a) = m$, then $sub_p(a^2-2) = m$, if *m* is odd, and $sub_p(a^2-2) = m/2$, if *m* is even.

LINEAR RECURRENCE RELATION

For each a in Z_p , define a sequence a_n in Z_p by $a_0 = 2$, $a_1 = a$, and $a_n = aa_{n-1} - a_{n-2}$, if n > 1.

If $a \neq 2$, then $m = sub_p(a)$ is the smallest positive integer for which $a_m = 2$.

Furthermore, for $1 \le k \le m/2$, the elements a_k are distinct, and

 $sub_p(a_k) = m/gcd(k,m).$

EXAMPLE

 $p = 19, \quad a = 6.$ $a_n = 6a_{n-1} - a_{n-2}, \text{ with } a_0 = 2 \text{ and } a_1 = 6$ 2, 6, -4, 8, -5, 0, 5, -8, 4, -6, -2, -6, 4, -8, 5, 0, -5, 8, -4, 6, 2, ...

 $sub_{19}(6) = 20$

 $\begin{aligned} sub_{19}(a) &= 20 &\leftrightarrow a = 6, 8, -8, 6\\ sub_{19}(a) &= 10 &\leftrightarrow a = -4, 5\\ sub_{19}(a) &= 5 &\leftrightarrow a = -5, 4\\ sub_{19}(a) &= 4 &\leftrightarrow a = 0\\ sub_{19}(a) &= 2 &\leftrightarrow a = -2 \end{aligned}$

QUADRATIC FIELDS

Let *E* be a quadratic extension field of Z_p , that is, a field with p^2 elements.

A quadratic polynomial must factor in E[x]: $f(x) = x^2+bx+c = (x-u)(x-v) = x^2 - (u+v)x + uv.$

The subnumber of f(x) is $a_p(f) = b^2 c^{-1} - 2 = (u+v)^2 (uv)^{-1} - 2 = uv^{-1} + u^{-1}v.$

If $u \neq v$, the suborder of f(x) modulo p is the order of $z = uv^{-1}$ in the group of units in E.

> (If f(x) divides $x^m - d$, then $u^m = d = v^m$, so $(uv^{-1})^m = 1$.)

QUADRATIC FIELD CALCULATIONS

For each *a* in Z_p , there is a unique pair of inverse elements *z* and z^1 in *E* so that $a = z + z^1$. (*z* and z^1 are roots of $x^2 - ax + 1$ in *E*.)

For each integer k, let $a_k = z^k + z^{-k}$, an element of Z_p .

Note that $a_0 = 2$ and $a_1 = a$.

Since $aa_k = (z+z^1)(z^k+z^k) = z^{k+1} + z^{k-1} + z^{k+1} + z^{k-1} = a_{k+1} + a_{k-1}$ we find that $a_n = aa_{n-1} - a_{n-2}$ for n > 1.

> $a_m = 2$ if and only if $z^m = 1$. The smallest positive *m* is $ord(z) = sub_p(a)$.

Likewise, $sub_p(a_k) = ord(z^k)$, which is m/gcd(k,m).

QUESTIONS?