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The (7, 3, 1) block design

B1 = {1, 2, 4}
B2 = {2, 3, 5}
B3 = {3, 4, 6}
B4 = {4, 5, 7}
B5 = {5, 6, 1}
B6 = {6, 7, 2}
B7 = {7, 1, 3}

The (7, 3, 1) block design is:

a set V of 7 items (or varieties) and a collection of 7 subsets of V
called blocks, such that

each block contains three varieties,

each variety is in three blocks, and

each pair of varieties is in exactly one block together.
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Permutations and the cycle notation

A permutation of a set S is a mapping of S to itself that is
one-to-one and onto.

The permutation ρ : 1→ 2→ 4→ 1, 3→ 6→ 5→ 3, 7→ 7 of the
set {1, 2, 3, 4, 5, 6, 7} can also be written as ρ = (1, 2, 4)(3, 6, 5)(7).
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Symmetries of block designs

A symmetry of a design is a permutation of its varieties that also
permutes its blocks.

The permutation ρ = (1, 2, 4)(3, 6, 5)(7) determines (or induces) the
permutation ρ∗ : (B1)(B2,B3,B5)(B4,B7,B6) on the blocks of
(7, 3, 1). Thus, ρ is a symmetry of (7, 3, 1).

The symmetries of a design D form a group under composition of
mappings — the symmetry group Sym(D).
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Orbits and Stabilizers

Let G be a group of permutations of a set S , let T ⊆ S and let x ∈ S .

OrbG (x) = {y ∈ S : y = g(x) for some g ∈ G} is called the orbit of x
under G . Similarly, OrbG (T ) = {R ⊆ S : R = g(T ) for some g ∈ G}
is called the orbit of T under G .

StabG (T ) = {g ∈ G : g(T ) = T} is called the stabilizer of T in G ;
we denote StabG ({x}) by StabG (x). If α ∈ StabG (T ), we say that α
stabilizes or fixes T .
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The Orbit-Stabilizer Theorem

Theorem: Let G be a finite group of permutations on a finite set S , let
T ⊆ S , and let |X | denote the cardinality (or order) of X . Then StabG (T )
is a subgroup of G , and the cardinalities of G , StabG (T ), and OrbG (T )
are related by the equation

|G | = |OrbG (T )| · |StabG (T )|.
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Some symmetry groups and how they are related

Let D denote the (7, 3, 1) design. We define the following groups:

G = Sym(D) – the symmetry group of D
H = StabG (B1) – the symmetries that fix B1

K = StabH(1) – the symmetries that fix B1 and 1

L = StabK (2) – the symmetries that fix B1 and 1 and 2

By three applications of the Orbit-Stabilizer Theorem,

|G | = |OrbG (B1)| · |OrbH(1)| · |OrbK (2)| · |L|.
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The symmetry τ

Define τ on {1, 2, 3, 4, 5, 6, 7} by τ = (1, 2, 3, 4, 5, 6, 7). Fact: τ ∈ G .

Here’s how the induced map τ∗ acts on the blocks of (7, 3, 1):

τ(B1) = τ({1, 2, 4}) = {2, 3, 5} = B2

τ(B2) = τ({2, 3, 5}) = {3, 4, 6} = B3

τ(B3) = τ({3, 4, 6}) = {4, 5, 7} = B4

τ(B4) = τ({4, 5, 7}) = {5, 6, 1} = B5

τ(B5) = τ({5, 6, 1}) = {6, 7, 2} = B6

τ(B6) = τ({6, 7, 2}) = {7, 1, 3} = B7

τ(B7) = τ({7, 1, 3}) = {1, 2, 4} = B1

Thus, τ∗ = (B1,B2,B3,B4,B5,B6,B7), so |OrbG (B1)| = 7.
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τ and τ ∗

τ∗ = (B1,B2,B3,B4,B5,B6,B7)
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τ = (1, 2, 3, 4, 5, 6, 7) cyclically permutes 1, 2, 3, 4, 5, 6 and 7.

Brown The symmetries of (7, 3, 1)



The symmetry ρ

Define ρ on {1, 2, 3, 4, 5, 6, 7} by ρ = (1, 2, 4)(3, 6, 5)(7). Fact: ρ fixes B1,
so ρ ∈ H = StabG (B1).

Here’s how the induced map ρ∗ acts on the blocks of (7, 3, 1):

ρ(B1) = ρ({1, 2, 4}) = {2, 4, 1} = B1

ρ(B2) = ρ({2, 3, 5}) = {4, 6, 3} = B3

ρ(B3) = ρ({3, 4, 6}) = {6, 1, 5} = B5

ρ(B4) = ρ({4, 5, 7}) = {1, 3, 7} = B7

ρ(B5) = ρ({5, 6, 1}) = {3, 5, 2} = B2

ρ(B6) = ρ({6, 7, 2}) = {5, 7, 4} = B4

ρ(B7) = ρ({7, 1, 3}) = {7, 2, 6} = B6

Thus, ρ∗ = (B1)(B2,B3,B5)(B4,B7,B6); as ρ cyclically permutes 1, 2 and
4, we see that |OrbH(1)| = 3.
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ρ and ρ∗

ρ∗ = (B1)(B2,B3,B5)(B4,B7,B6)
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ρ = (1, 2, 4)(3, 6, 5)(7) rotates {1, 2, 4}, rotates {3, 6, 5}, fixes 7.
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The symmetry σ

Define σ on {1, 2, 3, 4, 5, 6, 7} by σ = (1)(2, 4)(3, 5, 7, 6). Fact: σ fixes
both B1 and 1, so σ ∈ K = StabH(1).

Here’s how the induced map σ∗ acts on the blocks of (7, 3, 1):

σ(B1) = σ({1, 2, 4}) = {1, 4, 2} = B1

σ(B2) = σ({2, 3, 5}) = {4, 5, 7} = B4

σ(B3) = σ({3, 4, 6}) = {5, 2, 3} = B2

σ(B4) = σ({4, 5, 7}) = {2, 7, 6} = B6

σ(B5) = σ({5, 6, 1}) = {7, 3, 1} = B7

σ(B6) = σ({6, 7, 2}) = {3, 6, 4} = B3

σ(B7) = σ({7, 1, 3}) = {6, 1, 5} = B5

Thus, σ∗ = (B1)(B2,B4,B6,B3)(B5,B7). As σ switches 2 and 4, we see
that |OrbK (2) = 2|.
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σ and σ∗

σ∗ = (B1)(B2,B4,B6,B3)(B5,B7)
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σ = (1)(2, 4)(3, 5, 7, 6) fixes 1, swaps 2 and 4, rotates {3, 5, 7, 6}.
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The symmetry δ

Define δ on {1, 2, 3, 4, 5, 6, 7} by δ = (1)(2)(4)(3, 5)(6, 7). Fact:
L = {identity , δ, σ2, δσ2} – thus, |StabK (2)| = |L| = 4.

Here’s how the induced map δ∗ acts on the blocks of (7, 3, 1):

δ(B1) = δ({1, 2, 4}) = {1, 2, 4} = B1

δ(B2) = δ({2, 3, 5}) = {2, 5, 3} = B2

δ(B3) = δ({3, 4, 6}) = {5, 4, 7} = B4

δ(B4) = δ({4, 5, 7}) = {4, 3, 6} = B3

δ(B5) = δ({5, 6, 1}) = {3, 7, 1} = B7

δ(B6) = δ({6, 7, 2}) = {7, 6, 2} = B6

δ(B7) = δ({7, 1, 3}) = {6, 1, 5} = B5

Thus, δ∗ = (B1)(B2)(B3,B4)(B5,B7)(B6).

Brown The symmetries of (7, 3, 1)



δ and δ∗

δ∗ = (B1)(B2)(B3,B4)(B5,B7)(B6)
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δ = (1)(2)(4)(3, 5)(7, 6) fixes 1, 2 and 4, swaps 3 and 5, swaps 7 and 6.
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Determining orbits and stabilizers

τ∗ = (B1,B2,B3,B4,B5,B6,B7) ∈ G , so |OrbG (B1)| = 7.

ρ∗ = (B1)(B2,B3,B5)(B4,B7,B6) ∈ H = StabG (B1), and
ρ = (1, 2, 4)(3, 6, 5)(7), so |OrbH(1)| = 3.

σ = (1)(2, 4)(3, 5, 7, 6) fixes 1 and swaps 2 and 4, so
σ∗ = (B1)(B2,B4,B6,B3)(B5,B7) ∈ K = StabH(1), and
|OrbK (2)| = 2.

δ = (1)(2)(4)(3, 5)(7, 6) fixes 1, 2 and 4, so
δ∗ = (B1)(B2)(B3,B4)(B5,B7)(B6) ∈ L = StabK (2). In fact,
L = {id , δ∗, σ∗2, δ∗σ∗2} and |L| = 4.
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Let’s “do the math”

The Orbit-Stabilizer Theorem tells us that for G = Sym(D),

|G | = |OrbG | · |OrbH(1)| · |OrbK (2)| · |StabK (2)|
= 7 · 3 · 2 · 4
= 168.

Hence, there are 168 symmetries of (7, 3, 1).
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Facts about Sym((7,3,1))

Sym((7,3,1)) is generated by τ = (1, 2, 3, 4, 5, 6, 7) and
σ = (1)(2, 4)(3, 5, 7, 6).

Sym((7,3,1)) is commonly known as GL(3, 2), the 3× 3 matrices with
entries in Z mod 2.

Another name for GL(3, 2) is PSL(2, 7), the 2× 2 matrices with
entries in Z mod 7 and determinant 1, with I and −I identified.

Sym((7,3,1)) is simple: it has no nontrivial normal subgroups.

. . . and . . .
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The Surprise Ending
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The Surprise Ending

Sym((7,3,1)) contains

within its subgroup structure

a copy of the (7, 3, 1) design.
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THANK YOU!
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