The symmetries of (7, 3, 1)

Ezra Brown Virginia Tech

MD/DC/VA Fall Section Meeting Virginia Military Institute October 27, 2012

- The (7, 3, 1) design
- Symmetries of a design
- The Orbit-Stabilizer Theorem
- The number of symmetries of (7, 3, 1)
- A surprise ending

$$B_1 = \{1, 2, 4\}$$

$$B_2 = \{2, 3, 5\}$$

$$B_3 = \{3, 4, 6\}$$

$$B_4 = \{4, 5, 7\}$$

$$B_5 = \{5, 6, 1\}$$

$$B_6 = \{6, 7, 2\}$$

$$B_7 = \{7, 1, 3\}$$

The (7, 3, 1) block design is:

- a set V of 7 items (or *varieties*) and a collection of 7 subsets of V called *blocks*, such that
- each block contains three varieties,
- each variety is in three blocks, and
- each pair of varieties is in exactly one block together.

• A *permutation* of a set S is a mapping of S to itself that is one-to-one and onto.

• The permutation $\rho: 1 \rightarrow 2 \rightarrow 4 \rightarrow 1, 3 \rightarrow 6 \rightarrow 5 \rightarrow 3, 7 \rightarrow 7$ of the set $\{1, 2, 3, 4, 5, 6, 7\}$ can also be written as $\rho = (1, 2, 4)(3, 6, 5)(7)$.

- A symmetry of a design is a permutation of its varieties that also permutes its blocks.
- The permutation $\rho = (1, 2, 4)(3, 6, 5)(7)$ determines (or *induces*) the permutation $\rho^* : (B_1)(B_2, B_3, B_5)(B_4, B_7, B_6)$ on the blocks of (7, 3, 1). Thus, ρ is a symmetry of (7, 3, 1).
- The symmetries of a design D form a group under composition of mappings — the symmetry group Sym(D).

Let G be a group of permutations of a set S, let $T \subseteq S$ and let $x \in S$.

Orb_G(x) = {y ∈ S : y = g(x) for some g ∈ G} is called the orbit of x under G. Similarly, Orb_G(T) = {R ⊆ S : R = g(T) for some g ∈ G} is called the orbit of T under G.

 Stab_G(T) = {g ∈ G : g(T) = T} is called the stabilizer of T in G; we denote Stab_G({x}) by Stab_G(x). If α ∈ Stab_G(T), we say that α stabilizes or fixes T. **Theorem:** Let G be a finite group of permutations on a finite set S, let $T \subseteq S$, and let |X| denote the cardinality (or order) of X. Then $Stab_G(T)$ is a subgroup of G, and the cardinalities of G, $Stab_G(T)$, and $Orb_G(T)$ are related by the equation

$$|G| = |Orb_G(T)| \cdot |Stab_G(T)|.$$

Let \mathcal{D} denote the (7,3,1) design. We define the following groups:

- $G = Sym(\mathcal{D})$ the symmetry group of \mathcal{D}
- $H = Stab_G(B_1)$ the symmetries that fix B_1
- $K = Stab_H(1)$ the symmetries that fix B_1 and 1
- $L = Stab_{K}(2)$ the symmetries that fix B_1 and 1 and 2

By three applications of the Orbit-Stabilizer Theorem,

 $|G| = |Orb_G(B_1)| \cdot |Orb_H(1)| \cdot |Orb_K(2)| \cdot |L|.$

Define τ on $\{1, 2, 3, 4, 5, 6, 7\}$ by $\tau = (1, 2, 3, 4, 5, 6, 7)$. Fact: $\tau \in G$.

Here's how the induced map τ^* acts on the blocks of (7,3,1):

$$\begin{aligned} \tau(B_1) &= \tau(\{1, 2, 4\}) = \{2, 3, 5\} = B_2 \\ \tau(B_2) &= \tau(\{2, 3, 5\}) = \{3, 4, 6\} = B_3 \\ \tau(B_3) &= \tau(\{3, 4, 6\}) = \{4, 5, 7\} = B_4 \\ \tau(B_4) &= \tau(\{4, 5, 7\}) = \{5, 6, 1\} = B_5 \\ \tau(B_5) &= \tau(\{5, 6, 1\}) = \{6, 7, 2\} = B_6 \\ \tau(B_6) &= \tau(\{6, 7, 2\}) = \{7, 1, 3\} = B_7 \\ \tau(B_7) &= \tau(\{7, 1, 3\}) = \{1, 2, 4\} = B_1 \end{aligned}$$

Thus, $\tau^* = (B_1, B_2, B_3, B_4, B_5, B_6, B_7)$, so $|Orb_G(B_1)| = 7$.

 τ and τ^*

 $\tau^* = (B_1, B_2, B_3, B_4, B_5, B_6, B_7)$

 $\tau = (1, 2, 3, 4, 5, 6, 7)$ cyclically permutes 1, 2, 3, 4, 5, 6 and 7.

Define ρ on $\{1, 2, 3, 4, 5, 6, 7\}$ by $\rho = (1, 2, 4)(3, 6, 5)(7)$. Fact: ρ fixes B_1 , so $\rho \in H = Stab_G(B_1)$.

Here's how the induced map ρ^* acts on the blocks of (7, 3, 1):

$$\rho(B_1) = \rho(\{1, 2, 4\}) = \{2, 4, 1\} = B_1
\rho(B_2) = \rho(\{2, 3, 5\}) = \{4, 6, 3\} = B_3
\rho(B_3) = \rho(\{3, 4, 6\}) = \{6, 1, 5\} = B_5
\rho(B_4) = \rho(\{4, 5, 7\}) = \{1, 3, 7\} = B_7
\rho(B_5) = \rho(\{5, 6, 1\}) = \{3, 5, 2\} = B_2
\rho(B_6) = \rho(\{6, 7, 2\}) = \{5, 7, 4\} = B_4
\rho(B_7) = \rho(\{7, 1, 3\}) = \{7, 2, 6\} = B_6$$

Thus, $\rho^* = (B_1)(B_2, B_3, B_5)(B_4, B_7, B_6)$; as ρ cyclically permutes 1, 2 and 4, we see that $|Orb_H(1)| = 3$.

ho and ho^*

$$\rho^* = (B_1)(B_2, B_3, B_5)(B_4, B_7, B_6)$$

 $\rho = (1, 2, 4)(3, 6, 5)(7)$ rotates $\{1, 2, 4\}$, rotates $\{3, 6, 5\}$, fixes 7.

Define σ on $\{1, 2, 3, 4, 5, 6, 7\}$ by $\sigma = (1)(2, 4)(3, 5, 7, 6)$. Fact: σ fixes both B_1 and 1, so $\sigma \in K = Stab_H(1)$.

Here's how the induced map σ^* acts on the blocks of (7, 3, 1):

$$\begin{aligned} \sigma(B_1) &= \sigma(\{1,2,4\}) = \{1,4,2\} = B_1 \\ \sigma(B_2) &= \sigma(\{2,3,5\}) = \{4,5,7\} = B_4 \\ \sigma(B_3) &= \sigma(\{3,4,6\}) = \{5,2,3\} = B_2 \\ \sigma(B_4) &= \sigma(\{4,5,7\}) = \{2,7,6\} = B_6 \\ \sigma(B_5) &= \sigma(\{5,6,1\}) = \{7,3,1\} = B_7 \\ \sigma(B_6) &= \sigma(\{6,7,2\}) = \{3,6,4\} = B_3 \\ \sigma(B_7) &= \sigma(\{7,1,3\}) = \{6,1,5\} = B_5 \end{aligned}$$

Thus, $\sigma^* = (B_1)(B_2, B_4, B_6, B_3)(B_5, B_7)$. As σ switches 2 and 4, we see that $|Orb_{\mathcal{K}}(2) = 2|$.

 σ and σ^*

$$\sigma^* = (B_1)(B_2, B_4, B_6, B_3)(B_5, B_7)$$

 $\sigma = (1)(2,4)(3,5,7,6)$ fixes 1, swaps 2 and 4, rotates $\{3,5,7,6\}$.

The symmetry δ

Define δ on $\{1, 2, 3, 4, 5, 6, 7\}$ by $\delta = (1)(2)(4)(3, 5)(6, 7)$. Fact: $L = \{identity, \delta, \sigma^2, \delta\sigma^2\} - thus, |Stab_K(2)| = |L| = 4.$

Here's how the induced map δ^* acts on the blocks of (7, 3, 1):

$$\begin{split} \delta(B_1) &= \delta(\{1,2,4\}) = \{1,2,4\} = B_1\\ \delta(B_2) &= \delta(\{2,3,5\}) = \{2,5,3\} = B_2\\ \delta(B_3) &= \delta(\{3,4,6\}) = \{5,4,7\} = B_4\\ \delta(B_4) &= \delta(\{4,5,7\}) = \{4,3,6\} = B_3\\ \delta(B_5) &= \delta(\{5,6,1\}) = \{3,7,1\} = B_7\\ \delta(B_6) &= \delta(\{6,7,2\}) = \{7,6,2\} = B_6\\ \delta(B_7) &= \delta(\{7,1,3\}) = \{6,1,5\} = B_5 \end{split}$$

Thus, $\delta^* = (B_1)(B_2)(B_3, B_4)(B_5, B_7)(B_6)$.

 δ and δ^*

$$\delta^* = (B_1)(B_2)(B_3, B_4)(B_5, B_7)(B_6)$$

 $\delta = (1)(2)(4)(3,5)(7,6)$ fixes 1, 2 and 4, swaps 3 and 5, swaps 7 and 6.

•
$$au^* = (B_1, B_2, B_3, B_4, B_5, B_6, B_7) \in G$$
, so $|Orb_G(B_1)| = 7$.

- $\rho^* = (B_1)(B_2, B_3, B_5)(B_4, B_7, B_6) \in H = Stab_G(B_1)$, and $\rho = (1, 2, 4)(3, 6, 5)(7)$, so $|Orb_H(1)| = 3$.
- $\sigma = (1)(2,4)(3,5,7,6)$ fixes 1 and swaps 2 and 4, so $\sigma^* = (B_1)(B_2, B_4, B_6, B_3)(B_5, B_7) \in K = Stab_H(1)$, and $|Orb_K(2)| = 2$.
- $\delta = (1)(2)(4)(3,5)(7,6)$ fixes 1, 2 and 4, so $\delta^* = (B_1)(B_2)(B_3, B_4)(B_5, B_7)(B_6) \in L = Stab_K(2)$. In fact, $L = \{id, \delta^*, \sigma^{*2}, \delta^*\sigma^{*2}\}$ and |L| = 4.

The Orbit-Stabilizer Theorem tells us that for $G = Sym(\mathcal{D})$,

$$|G| = |Orb_G| \cdot |Orb_H(1)| \cdot |Orb_K(2)| \cdot |Stab_K(2)|$$

= 7 \cdot 3 \cdot 2 \cdot 4
= 168.

Hence, there are 168 symmetries of (7, 3, 1).

Facts about Sym((7,3,1))

- Sym((7,3,1)) is generated by $\tau = (1, 2, 3, 4, 5, 6, 7)$ and $\sigma = (1)(2,4)(3,5,7,6)$.
- Sym((7,3,1)) is commonly known as GL(3,2), the 3 × 3 matrices with entries in ℤ mod 2.
- Another name for GL(3,2) is PSL(2,7), the 2 × 2 matrices with entries in ℤ mod 7 and determinant 1, with I and −I identified.
- Sym((7,3,1)) is simple: it has no nontrivial normal subgroups.

 \bullet ... and ...

The Surprise Ending

Sym((7,3,1)) contains

within its subgroup structure a copy of the (7, 3, 1) design.

THANK YOU!